亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The contraction$^*$-depth is the matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph $G$ is the minimum height of a rooted forest whose closure contains $G$ by proving the following for every matroid $M$ (except the trivial case when $M$ consists of loops and bridges only): the contraction$^*$-depth of $M$ plus one is equal to the minimum contraction-depth of a matroid containing $M$ as a restriction.

相關內容

Rational best approximations (in a Chebyshev sense) to real functions are characterized by an equioscillating approximation error. Similar results do not hold true for rational best approximations to complex functions in general. In the present work, we consider unitary rational approximations to the exponential function on the imaginary axis, which map the imaginary axis to the unit circle. In the class of unitary rational functions, best approximations are shown to exist, to be uniquely characterized by equioscillation of a phase error, and to possess a super-linear convergence rate. Furthermore, the best approximations have full degree (i.e., non-degenerate), achieve their maximum approximation error at points of equioscillation, and interpolate at intermediate points. Asymptotic properties of poles, interpolation nodes, and equioscillation points of these approximants are studied. Three algorithms, which are found very effective to compute unitary rational approximations including candidates for best approximations, are sketched briefly. Some consequences to numerical time-integration are discussed. In particular, time propagators based on unitary best approximants are unitary, symmetric and A-stable.

Classification of $N$ points becomes a simultaneous control problem when viewed through the lens of neural ordinary differential equations (neural ODEs), which represent the time-continuous limit of residual networks. For the narrow model, with one neuron per hidden layer, it has been shown that the task can be achieved using $O(N)$ neurons. In this study, we focus on estimating the number of neurons required for efficient cluster-based classification, particularly in the worst-case scenario where points are independently and uniformly distributed in $[0,1]^d$. Our analysis provides a novel method for quantifying the probability of requiring fewer than $O(N)$ neurons, emphasizing the asymptotic behavior as both $d$ and $N$ increase. Additionally, under the sole assumption that the data are in general position, we propose a new constructive algorithm that simultaneously classifies clusters of $d$ points from any initial configuration, effectively reducing the maximal complexity to $O(N/d)$ neurons.

In this note we prove almost sure unisolvence of RBF interpolation on randomly distributed sequences by a wide class of polyharmonic splines (including Thin-Plate Splines), without polynomial addition.

Geometric deep learning refers to the scenario in which the symmetries of a dataset are used to constrain the parameter space of a neural network and thus, improve their trainability and generalization. Recently this idea has been incorporated into the field of quantum machine learning, which has given rise to equivariant quantum neural networks (EQNNs). In this work, we investigate the role of classical-to-quantum embedding on the performance of equivariant quantum convolutional neural networks (EQCNNs) for the classification of images. We discuss the connection between the data embedding method and the resulting representation of a symmetry group and analyze how changing representation affects the expressibility of an EQCNN. We numerically compare the classification accuracy of EQCNNs with three different basis-permuted amplitude embeddings to the one obtained from a non-equivariant quantum convolutional neural network (QCNN). Our results show that all the EQCNNs achieve higher classification accuracy than the non-equivariant QCNN for small numbers of training iterations, while for large iterations this improvement crucially depends on the used embedding. It is expected that the results of this work can be useful to the community for a better understanding of the importance of data embedding choice in the context of geometric quantum machine learning.

A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. A natural question posed there asks if bounded quartic polynomials can be approximated by $2$-query quantum algorithms. Arunachalam, Palazuelos and the first author showed that there is no direct analogue of the result of Aaronson et al. in this case. We improve on this result in the following ways: First, we point out and fix a small error in the construction that has to do with a translation from cubic to quartic polynomials. Second, we give a completely explicit example based on techniques from additive combinatorics. Third, we show that the result still holds when we allow for a small additive error. For this, we apply an SDP characterization of Gribling and Laurent (QIP'19) for the completely-bounded approximate degree.

A linearly ordered (LO) $k$-colouring of a hypergraph is a colouring of its vertices with colours $1, \dots, k$ such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO $k$-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the `linearly ordered chromatic number' of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO $3$-colourable, and the case that it is not even LO $4$-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opr\v{s}al, Wrochna, and \v{Z}ivn\'y (2023).

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), the starting point of the present work is that different ways to categorize a given set of objects exist, which depend on the choice of the sets of features used to classify them, and different such sets of features may yield better or worse categorizations, relative to the task at hand. In their turn, the (a priori) choice of a particular set of features over another might be subjective and express a certain epistemic stance (e.g. interests, relevance, preferences) of an agent or a group of agents, namely, their interrogative agenda. In the present paper, we represent interrogative agendas as sets of features, and explore and compare different ways to categorize objects w.r.t. different sets of features (agendas). We first develop a simple unsupervised FCA-based algorithm for outlier detection which uses categorizations arising from different agendas. We then present a supervised meta-learning algorithm to learn suitable (fuzzy) agendas for categorization as sets of features with different weights or masses. We combine this meta-learning algorithm with the unsupervised outlier detection algorithm to obtain a supervised outlier detection algorithm. We show that these algorithms perform at par with commonly used algorithms for outlier detection on commonly used datasets in outlier detection. These algorithms provide both local and global explanations of their results.

In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.

In this contribution, we derive a consistent variational formulation for computational homogenization methods and show that traditional FE2 and IGA2 approaches are special discretization and solution techniques of this most general framework. This allows us to enhance dramatically the numerical analysis as well as the solution of the arising algebraic system. In particular, we expand the dimension of the continuous system, discretize the higher dimensional problem consistently and apply afterwards a discrete null-space matrix to remove the additional dimensions. A benchmark problem, for which we can obtain an analytical solution, demonstrates the superiority of the chosen approach aiming to reduce the immense computational costs of traditional FE2 and IGA2 formulations to a fraction of the original requirements. Finally, we demonstrate a further reduction of the computational costs for the solution of general non-linear problems.

Coordinate exchange (CEXCH) is a popular algorithm for generating exact optimal experimental designs. The authors of CEXCH advocated for a highly greedy implementation - one that exchanges and optimizes single element coordinates of the design matrix. We revisit the effect of greediness on CEXCHs efficacy for generating highly efficient designs. We implement the single-element CEXCH (most greedy), a design-row (medium greedy) optimization exchange, and particle swarm optimization (PSO; least greedy) on 21 exact response surface design scenarios, under the $D$- and $I-$criterion, which have well-known optimal designs that have been reproduced by several researchers. We found essentially no difference in performance of the most greedy CEXCH and the medium greedy CEXCH. PSO did exhibit better efficacy for generating $D$-optimal designs, and for most $I$-optimal designs than CEXCH, but not to a strong degree under our parametrization. This work suggests that further investigation of the greediness dimension and its effect on CEXCH efficacy on a wider suite of models and criterion is warranted.

北京阿比特科技有限公司