亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give an alternative derivation of $(N,N)$-isogenies between fastKummer surfaces which complements existing works based on the theory oftheta functions. We use this framework to produce explicit formulae for thecase of $N = 3$, and show that the resulting algorithms are more efficient thanall prior $(3, 3)$-isogeny algorithms.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Isogeometric analysis has brought a paradigm shift in integrating computational simulations with geometric designs across engineering disciplines. This technique necessitates analysis-suitable parameterization of physical domains to fully harness the synergy between Computer-Aided Design and Computer-Aided Engineering analyses. The existing methods often fix boundary parameters, leading to challenges in elongated geometries such as fluid channels and tubular reactors. This paper presents an innovative solution for the boundary parameter matching problem, specifically designed for analysis-suitable parameterizations. We employ a sophisticated Schwarz-Christoffel mapping technique, which is instrumental in computing boundary correspondences. A refined boundary curve reparameterization process complements this. Our dual-strategy approach maintains the geometric exactness and continuity of input physical domains, overcoming limitations often encountered with the existing reparameterization techniques. By employing our proposed boundary parameter method, we show that even a simple linear interpolation approach can effectively construct a satisfactory analysis-suitable parameterization. Our methodology offers significant improvements over traditional practices, enabling the generation of analysis-suitable and geometrically precise models, which is crucial for ensuring accurate simulation results. Numerical experiments show the capacity of the proposed method to enhance the quality and reliability of isogeometric analysis workflows.

We show that every $3$-connected $K_{2,\ell}$-minor free graph with minimum degree at least $4$ has maximum degree at most $7\ell$. As a consequence, we show that every 3-connected $K_{2,\ell}$-minor free graph with minimum degree at least $5$ and no twins of degree $5$ has bounded size. Our proofs use Steiner trees and nested cuts; in particular, they do not rely on Ding's characterization of $K_{2,\ell}$-minor free graphs.

In many circumstances given an ordered sequence of one or more types of elements/ symbols, the objective is to determine any existence of randomness in occurrence of one of the elements,say type 1 element. Such a method can be useful in determining existence of any non-random pattern in the wins or loses of a player in a series of games played. Existing methods of tests based on total number of runs or tests based on length of longest run (Mosteller (1941)) can be used for testing the null hypothesis of randomness in the entire sequence, and not a specific type of element. Additionally, the Runs Test tends to show results contradictory to the intuition visualised by the graphs of say, win proportions over time due to method used in computation of runs. This paper develops a test approach to address this problem by computing the gaps between two consecutive type 1 elements and thereafter following the idea of "pattern" in occurrence and "directional" trend (increasing, decreasing or constant), employs the use of exact Binomial test, Kenall's Tau and Siegel-Tukey test for scale problem. Further modifications suggested by Jan Vegelius(1982) have been applied in the Siegel Tukey test to adjust for tied ranks and achieve more accurate results. This approach is distribution-free and suitable for small sizes. Also comparisons with the conventional runs test shows the superiority of the proposed approach under the null hypothesis of randomness in the occurrence of type 1 elements.

In this paper, we explicitly determine local and global minimizers of the $\mathcal{L}^2$ cost function in underparametrized Deep Learning (DL) networks; our main goal is to shed light on their geometric structure and properties. We accomplish this by a direct construction, without invoking the gradient descent flow at any point of this work. We specifically consider $L$ hidden layers, a ReLU ramp activation function, an $\mathcal{L}^2$ Schatten class (or Hilbert-Schmidt) cost function, input and output spaces $\mathbb{R}^Q$ with equal dimension $Q\geq1$, and hidden layers also defined on $\mathbb{R}^{Q}$; the training inputs are assumed to be sufficiently clustered. The training input size $N$ can be arbitrarily large - thus, we are considering the underparametrized regime. More general settings are left to future work. We construct an explicit family of minimizers for the global minimum of the cost function in the case $L\geq Q$, which we show to be degenerate. Moreover, we determine a set of $2^Q-1$ distinct degenerate local minima of the cost function. In the context presented here, the concatenation of hidden layers of the DL network is reinterpreted as a recursive application of a {\em truncation map} which "curates" the training inputs by minimizing their noise to signal ratio.

$k$-core is a subgraph where every node has at least $k$ neighbors within the subgraph. The $k$-core subgraphs has been employed in large platforms like Network Repository to comprehend the underlying structures and dynamics of the network. Existing studies have primarily focused on finding $k$-core groups without considering their size, despite the relevance of solution sizes in many real-world scenarios. This paper addresses this gap by introducing the size-prescribed $k$-core search (SPCS) problem, where the goal is to find a subgraph of a specified size that has the highest possible core number. We propose two algorithms, namely the {\it TSizeKcore-BU} and the {\it TSizeKcore-TD}, to identify cohesive subgraphs that satisfy both the $k$-core requirement and the size constraint. Our experimental results demonstrate the superiority of our approach in terms of solution quality and efficiency. The {\it TSizeKcore-BU} algorithm proves to be highly efficient in finding size-prescribed $k$-core subgraphs on large datasets, making it a favorable choice for such scenarios. On the other hand, the {\it TSizeKcore-TD} algorithm is better suited for small datasets where running time is less critical.

We present a new algorithm for amortized inference in sparse probabilistic graphical models (PGMs), which we call $\Delta$-amortized inference ($\Delta$-AI). Our approach is based on the observation that when the sampling of variables in a PGM is seen as a sequence of actions taken by an agent, sparsity of the PGM enables local credit assignment in the agent's policy learning objective. This yields a local constraint that can be turned into a local loss in the style of generative flow networks (GFlowNets) that enables off-policy training but avoids the need to instantiate all the random variables for each parameter update, thus speeding up training considerably. The $\Delta$-AI objective matches the conditional distribution of a variable given its Markov blanket in a tractable learned sampler, which has the structure of a Bayesian network, with the same conditional distribution under the target PGM. As such, the trained sampler recovers marginals and conditional distributions of interest and enables inference of partial subsets of variables. We illustrate $\Delta$-AI's effectiveness for sampling from synthetic PGMs and training latent variable models with sparse factor structure.

In this work, we derive a $\gamma$-robust a posteriori error estimator for finite element approximations of the Allen-Cahn equation with variable non-degenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.

Given an undirected graph $G$, a quasi-clique is a subgraph of $G$ whose density is at least $\gamma$ $(0 < \gamma \leq 1)$. Two optimization problems can be defined for quasi-cliques: the Maximum Quasi-Clique (MQC) Problem, which finds a quasi-clique with maximum vertex cardinality, and the Densest $k$-Subgraph (DKS) Problem, which finds the densest subgraph given a fixed cardinality constraint. Most existing approaches to solve both problems often disregard the requirement of connectedness, which may lead to solutions containing isolated components that are meaningless for many real-life applications. To address this issue, we propose two flow-based connectedness constraints to be integrated into known Mixed-Integer Linear Programming (MILP) formulations for either MQC or DKS problems. We compare the performance of MILP formulations enhanced with our connectedness constraints in terms of both running time and number of solved instances against existing approaches that ensure quasi-clique connectedness. Experimental results demonstrate that our constraints are quite competitive, making them valuable for practical applications requiring connectedness.

This paper explores the residual based a posteriori error estimations for the generalized Burgers-Huxley equation (GBHE) featuring weakly singular kernels. Initially, we present a reliable and efficient error estimator for both the stationary GBHE and the semi-discrete GBHE with memory, utilizing the discontinuous Galerkin finite element method (DGFEM) in spatial dimensions. Additionally, employing backward Euler and Crank Nicolson discretization in the temporal domain and DGFEM in spatial dimensions, we introduce an estimator for the fully discrete GBHE, taking into account the influence of past history. The paper also establishes optimal $L^2$ error estimates for both the stationary GBHE and GBHE. Ultimately, we validate the effectiveness of the proposed error estimator through numerical results, demonstrating its efficacy in an adaptive refinement strategy.

The $L_p$-discrepancy is a classical quantitative measure for the irregularity of distribution of an $N$-element point set in the $d$-dimensional unit cube. Its inverse for dimension $d$ and error threshold $\varepsilon \in (0,1)$ is the number of points in $[0,1)^d$ that is required such that the minimal normalized $L_p$-discrepancy is less or equal $\varepsilon$. It is well known, that the inverse of $L_2$-discrepancy grows exponentially fast with the dimension $d$, i.e., we have the curse of dimensionality, whereas the inverse of $L_{\infty}$-discrepancy depends exactly linearly on $d$. The behavior of inverse of $L_p$-discrepancy for general $p \not\in \{2,\infty\}$ was an open problem since many years. Recently, the curse of dimensionality for the $L_p$-discrepancy was shown for an infinite sequence of values $p$ in $(1,2]$, but the general result seemed to be out of reach. In the present paper we show that the $L_p$-discrepancy suffers from the curse of dimensionality for all $p$ in $(1,\infty)$ and only the case $p=1$ is still open. This result follows from a more general result that we show for the worst-case error of positive quadrature formulas for an anchored Sobolev space of once differentiable functions in each variable whose first mixed derivative has finite $L_q$-norm, where $q$ is the H\"older conjugate of $p$.

北京阿比特科技有限公司