亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generalized linear models (GLMs) are routinely used for modeling relationships between a response variable and a set of covariates. The simple form of a GLM comes with easy interpretability, but also leads to concerns about model misspecification impacting inferential conclusions. A popular semi-parametric solution adopted in the frequentist literature is quasi-likelihood, which improves robustness by only requiring correct specification of the first two moments. We develop a robust approach to Bayesian inference in GLMs through quasi-posterior distributions. We show that quasi-posteriors provide a coherent generalized Bayes inference method, while also approximating so-called coarsened posteriors. In so doing, we obtain new insights into the choice of coarsening parameter. Asymptotically, the quasi-posterior converges in total variation to a normal distribution and has important connections with the loss-likelihood bootstrap posterior. We demonstrate that it is also well-calibrated in terms of frequentist coverage. Moreover, the loss-scale parameter has a clear interpretation as a dispersion, and this leads to a consolidated method of moments estimator.

相關內容

While generalized linear mixed models (GLMMs) are a fundamental tool in applied statistics, many specifications -- such as those involving categorical factors with many levels or interaction terms -- can be computationally challenging to estimate due to the need to compute or approximate high-dimensional integrals. Variational inference (VI) methods are a popular way to perform such computations, especially in the Bayesian context. However, naive VI methods can provide unreliable uncertainty quantification. We show that this is indeed the case in the GLMM context, proving that standard VI (i.e. mean-field) dramatically underestimates posterior uncertainty in high-dimensions. We then show how appropriately relaxing the mean-field assumption leads to VI methods whose uncertainty quantification does not deteriorate in high-dimensions, and whose total computational cost scales linearly with the number of parameters and observations. Our theoretical and numerical results focus on GLMMs with Gaussian or binomial likelihoods, and rely on connections to random graph theory to obtain sharp high-dimensional asymptotic analysis. We also provide generic results, which are of independent interest, relating the accuracy of variational inference to the convergence rate of the corresponding coordinate ascent variational inference (CAVI) algorithm for Gaussian targets. Our proposed partially-factorized VI (PF-VI) methodology for GLMMs is implemented in the R package vglmer, see //github.com/mgoplerud/vglmer . Numerical results with simulated and real data examples illustrate the favourable computation cost versus accuracy trade-off of PF-VI.

This paper proposes well-conditioned boundary integral equations based on the Burton-Miller method for solving transmission problems. The Burton-Miller method is widely accepted as a highly accurate numerical method based on the boundary integral equation for solving exterior wave problems. While this method can also be applied to solve the transmission problems, a straightforward formulation may yield ill-conditioned integral equations. Consequently, the resulting linear algebraic equations may involve a coefficient matrix with a huge condition number, leading to poor convergence of Krylov-based linear solvers. To address this challenge, our study enhances Burton-Miller-type boundary integral equations tailored for transmission problems by exploiting the Calderon formula. In cases where a single material exists in an unbounded host medium, we demonstrate the formulation of the boundary integral equation such that the underlying integral operator ${\cal A}$ is spectrally well-conditioned. Specifically, ${\cal A}$ can be designed in a simple manner that ensures ${\cal A}^2$ is bounded and has only a single eigenvalue accumulation point. Furthermore, we extend our analysis to the multi-material case, proving that the square of the proposed operator has only a few eigenvalues except for a compact perturbation. Through numerical examples of several benchmark problems, we illustrate that our formulation reduces the iteration number required by iterative linear solvers, even in the presence of material junction points; locations where three or more sub-domains meet on the boundary.

Coordinate exchange (CEXCH) is a popular algorithm for generating exact optimal experimental designs. The authors of CEXCH advocated for a highly greedy implementation - one that exchanges and optimizes single element coordinates of the design matrix. We revisit the effect of greediness on CEXCHs efficacy for generating highly efficient designs. We implement the single-element CEXCH (most greedy), a design-row (medium greedy) optimization exchange, and particle swarm optimization (PSO; least greedy) on 21 exact response surface design scenarios, under the $D$- and $I-$criterion, which have well-known optimal designs that have been reproduced by several researchers. We found essentially no difference in performance of the most greedy CEXCH and the medium greedy CEXCH. PSO did exhibit better efficacy for generating $D$-optimal designs, and for most $I$-optimal designs than CEXCH, but not to a strong degree under our parametrization. This work suggests that further investigation of the greediness dimension and its effect on CEXCH efficacy on a wider suite of models and criterion is warranted.

We derive and analyze a symmetric interior penalty discontinuous Galerkin scheme for the approximation of the second-order form of the radiative transfer equation in slab geometry. Using appropriate trace lemmas, the analysis can be carried out as for more standard elliptic problems. Supporting examples show the accuracy and stability of the method also numerically, for different polynomial degrees. For discretization, we employ quad-tree grids, which allow for local refinement in phase-space, and we show exemplary that adaptive methods can efficiently approximate discontinuous solutions. We investigate the behavior of hierarchical error estimators and error estimators based on local averaging.

Introducing a coupling framework reminiscent of FETI methods, but here on abstract form, we establish conditions for stability and minimal requirements for well-posedness on the continuous level, as well as conditions on local solvers for the approximation of subproblems. We then discuss stability of the resulting Lagrange multiplier methods and show stability under a mesh conditions between the local discretizations and the mortar space. If this condition is not satisfied we show how a stabilization, acting only on the multiplier can be used to achieve stability. The design of preconditioners of the Schur complement system is discussed in the unstabilized case. Finally we discuss some applications that enter the framework.

We revisit the general framework introduced by Fazylab et al. (SIAM J. Optim. 28, 2018) to construct Lyapunov functions for optimization algorithms in discrete and continuous time. For smooth, strongly convex objective functions, we relax the requirements necessary for such a construction. As a result we are able to prove for Polyak's ordinary differential equations and for a two-parameter family of Nesterov algorithms rates of convergence that improve on those available in the literature. We analyse the interpretation of Nesterov algorithms as discretizations of the Polyak equation. We show that the algorithms are instances of Additive Runge-Kutta integrators and discuss the reasons why most discretizations of the differential equation do not result in optimization algorithms with acceleration. We also introduce a modification of Polyak's equation and study its convergence properties. Finally we extend the general framework to the stochastic scenario and consider an application to random algorithms with acceleration for overparameterized models; again we are able to prove convergence rates that improve on those in the literature.

In this paper, a new two-relaxation-time regularized (TRT-R) lattice Boltzmann (LB) model for convection-diffusion equation (CDE) with variable coefficients is proposed. Within this framework, we first derive a TRT-R collision operator by constructing a new regularized procedure through the high-order Hermite expansion of non-equilibrium. Then a first-order discrete-velocity form of discrete source term is introduced to improve the accuracy of the source term. Finally and most importantly, a new first-order space-derivative auxiliary term is proposed to recover the correct CDE with variable coefficients. To evaluate this model, we simulate a classic benchmark problem of the rotating Gaussian pulse. The results show that our model has better accuracy, stability and convergence than other popular LB models, especially in the case of a large time step.

A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of $\ell$ predictors, we obtain a competitive ratio of $O(\ell^2)$, and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a $(1+\epsilon)$-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the $k$-server problem.

Generative models inspired by dynamical transport of measure -- such as flows and diffusions -- construct a continuous-time map between two probability densities. Conventionally, one of these is the target density, only accessible through samples, while the other is taken as a simple base density that is data-agnostic. In this work, using the framework of stochastic interpolants, we formalize how to \textit{couple} the base and the target densities, whereby samples from the base are computed conditionally given samples from the target in a way that is different from (but does preclude) incorporating information about class labels or continuous embeddings. This enables us to construct dynamical transport maps that serve as conditional generative models. We show that these transport maps can be learned by solving a simple square loss regression problem analogous to the standard independent setting. We demonstrate the usefulness of constructing dependent couplings in practice through experiments in super-resolution and in-painting.

Sentence embeddings induced with various transformer architectures encode much semantic and syntactic information in a distributed manner in a one-dimensional array. We investigate whether specific grammatical information can be accessed in these distributed representations. Using data from a task developed to test rule-like generalizations, our experiments on detecting subject-verb agreement yield several promising results. First, we show that while the usual sentence representations encoded as one-dimensional arrays do not easily support extraction of rule-like regularities, a two-dimensional reshaping of these vectors allows various learning architectures to access such information. Next, we show that various architectures can detect patterns in these two-dimensional reshaped sentence embeddings and successfully learn a model based on smaller amounts of simpler training data, which performs well on more complex test data. This indicates that current sentence embeddings contain information that is regularly distributed, and which can be captured when the embeddings are reshaped into higher dimensional arrays. Our results cast light on representations produced by language models and help move towards developing few-shot learning approaches.

北京阿比特科技有限公司