亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The high-index saddle dynamics (HiSD) method [J. Yin, L. Zhang, and P. Zhang, {\it SIAM J. Sci. Comput., }41 (2019), pp.A3576-A3595] serves as an efficient tool for computing index-$k$ saddle points and constructing solution landscapes. Nevertheless, the conventional HiSD method often encounters slow convergence rates on ill-conditioned problems. To address this challenge, we propose an accelerated high-index saddle dynamics (A-HiSD) by incorporating the heavy ball method. We prove the linear stability theory of the continuous A-HiSD, and subsequently estimate the local convergence rate for the discrete A-HiSD. Our analysis demonstrates that the A-HiSD method exhibits a faster convergence rate compared to the conventional HiSD method, especially when dealing with ill-conditioned problems. We also perform various numerical experiments including the loss function of neural network to substantiate the effectiveness and acceleration of the A-HiSD method.

相關內容

在數學中,鞍點或極大極小點是函數圖形表面上的一點,其正交方向上的斜率(導數)都為零,但它不是函數的局部極值。鞍點是在某一軸向(峰值之間)有一個相對最小的臨界點,在交叉軸上有一個相對最大的臨界點。

Porous media processes involve various physical phenomena such as mechanical deformation, transport, and fluid flow. Accurate simulations must capture the strong couplings between these phenomena. Choosing an efficient solver for the multiphysics problem usually entails the decoupling into subproblems related to separate physical phenomena. Then, the suitable solvers for each subproblem and the iteration scheme must be chosen. The wide range of options for the solver components makes finding the optimum difficult and time-consuming; moreover, solvers come with numerical parameters that need to be optimized. As a further complication, the solver performance may depend on the physical regime of the simulation model, which may vary with time. Switching a solver with respect to the dominant process can be beneficial, but the threshold of when to switch solver is unclear and complicated to analyze. We address this challenge by developing a machine learning framework that automatically searches for the optimal solver for a given multiphysics simulation setup, based on statistical data from previously solved problems. For a series of problems, exemplified by successive time steps in a time-dependent simulation, the framework updates and improves its decision model online during the simulation. We show how it outperforms preselected state-of-the-art solvers for test problem setups. The examples are based on simulations of poromechanics and simulations of flow and transport. For the quasi-static linear Biot model, we demonstrate automated tuning of numerical solver parameters by showing how the L-parameter of the so-called Fixed-Stress preconditioner can be optimized. Motivated by a test example where the main heat transfer mechanism changes between convection and diffusion, we discuss how the solver selector can dynamically switch solvers when the dominant physical phenomenon changes with time.

The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. We discretise physical fields on the finite element grid using high-order Lagrange basis functions. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains given by complex CAD models and discretised with tens of millions of degrees of freedom.

It is well-known that a multilinear system with a nonsingular M-tensor and a positive right-hand side has a unique positive solution. Tensor splitting methods generalizing the classical iterative methods for linear systems have been proposed for finding the unique positive solution. The Alternating Anderson-Richardson (AAR) method is an effective method to accelerate the classical iterative methods. In this study, we apply the idea of AAR for finding the unique positive solution quickly. We first present a tensor Richardson method based on tensor regular splittings, then apply Anderson acceleration to the tensor Richardson method and derive a tensor Anderson-Richardson method, finally, we periodically employ the tensor Anderson-Richardson method within the tensor Richardson method and propose a tensor AAR method. Numerical experiments show that the proposed method is effective in accelerating tensor splitting methods.

We propose a Lawson-time-splitting extended Fourier pseudospectral (LTSeFP) method for the numerical integration of the Gross-Pitaevskii equation with time-dependent potential that is of low regularity in space. For the spatial discretization of low regularity potential, we use an extended Fourier pseudospectral (eFP) method, i.e., we compute the discrete Fourier transform of the low regularity potential in an extended window. For the temporal discretization, to efficiently implement the eFP method for time-dependent low regularity potential, we combine the standard time-splitting method with a Lawson-type exponential integrator to integrate potential and nonlinearity differently. The LTSeFP method is both accurate and efficient: it achieves first-order convergence in time and optimal-order convergence in space in $L^2$-norm under low regularity potential, while the computational cost is comparable to the standard time-splitting Fourier pseudospectral method. Theoretically, we also prove such convergence orders for a large class of spatially low regularity time-dependent potential. Extensive numerical results are reported to confirm the error estimates and to demonstrate the superiority of our method.

We develop adaptive time-stepping strategies for It\^o-type stochastic differential equations (SDEs) with jump perturbations. Our approach builds on adaptive strategies for SDEs. Adaptive methods can ensure strong convergence of nonlinear SDEs with drift and diffusion coefficients that violate global Lipschitz bounds by adjusting the stepsize dynamically on each trajectory to prevent spurious growth that can lead to loss of convergence if it occurs with sufficiently high probability. In this article we demonstrate the use of a jump-adapted mesh that incorporates jump times into the adaptive time-stepping strategy. We prove that any adaptive scheme satisfying a particular mean-square consistency bound for a nonlinear SDE in the non-jump case may be extended to a strongly convergent scheme in the Poisson jump case where jump and diffusion perturbations are mutually independent and the jump coefficient satisfies a global Lipschitz condition.

Navigating dynamic environments requires the robot to generate collision-free trajectories and actively avoid moving obstacles. Most previous works designed path planning algorithms based on one single map representation, such as the geometric, occupancy, or ESDF map. Although they have shown success in static environments, due to the limitation of map representation, those methods cannot reliably handle static and dynamic obstacles simultaneously. To address the problem, this paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision. The depth vision enables the robot to track and represent dynamic objects geometrically based on the voxel map. The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles. Then, with the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions. Finally, the iterative re-guide strategy is applied to generate the collision-free trajectory. The simulation and physical experiments prove that our method can run in real-time to navigate dynamic environments safely. Our software is available on GitHub as an open-source package.

This paper deals with the derivation of Non-Intrusive Reduced Basis (NIRB) techniques for sensitivity analysis, more specifically the direct and adjoint state methods. For highly complex parametric problems, these two approaches may become too costly. To reduce computational times, Proper Orthogonal Decomposition (POD) and Reduced Basis Methods (RBMs) have already been investigated. The majority of these algorithms are however intrusive in the sense that the High-Fidelity (HF) code must be modified. To address this issue, non-intrusive strategies are employed. The NIRB two-grid method uses the HF code solely as a ``black-box'', requiring no code modification. Like other RBMs, it is based on an offline-online decomposition. The offline stage is time-consuming, but it is only executed once, whereas the online stage is significantly less expensive than an HF evaluation. In this paper, we propose new NIRB two-grid algorithms for both the direct and adjoint state methods. On the direct method, we prove on a classical model problem, the heat equation, that HF evaluations of sensitivities reach an optimal convergence rate in $L^{\infty}(0,T;H^1(\Omega))$, and then establish that these rates are recovered by the proposed NIRB approximation. These results are supported by numerical simulations. We then numerically demonstrate that a Gaussian process regression can be used to approximate the projection coefficients of the NIRB two-grid method. This further reduces the computational costs of the online step while only computing a coarse solution of the initial problem. All numerical results are run with the model problem as well as a more complex problem, namely the Brusselator system.

We consider nonlinear solvers for the incompressible, steady (or at a fixed time step for unsteady) Navier-Stokes equations in the setting where partial measurement data of the solution is available. The measurement data is incorporated/assimilated into the solution through a nudging term addition to the the Picard iteration that penalized the difference between the coarse mesh interpolants of the true solution and solver solution, analogous to how continuous data assimilation (CDA) is implemented for time dependent PDEs. This was considered in the paper [Li et al. {\it CMAME} 2023], and we extend the methodology by improving the analysis to be in the $L^2$ norm instead of a weighted $H^1$ norm where the weight depended on the coarse mesh width, and to the case of noisy measurement data. For noisy measurement data, we prove that the CDA-Picard method is stable and convergent, up to the size of the noise. Numerical tests illustrate the results, and show that a very good strategy when using noisy data is to use CDA-Picard to generate an initial guess for the classical Newton iteration.

This paper presents asymptotic results for the maximum likelihood and restricted maximum likelihood (REML) estimators within a two-way crossed mixed effect model as the sizes of the rows, columns, and cells tend to infinity. Under very mild conditions which do not require the assumption of normality, the estimators are proven to be asymptotically normal, possessing a structured covariance matrix. The growth rate for the number of rows, columns, and cells is unrestricted, whether considered pairwise or collectively.

Nurmuhammad et al. developed the Sinc-Nystr\"{o}m methods for initial value problems in which the solutions exhibit exponential decay end behavior. In these methods, the Single-Exponential (SE) transformation or the Double-Exponential (DE) transformation is combined with the Sinc approximation. Hara and Okayama improved on these transformations to attain a better convergence rate, which was later supported by theoretical error analyses. However, these methods have a computational drawback owing to the inclusion of a special function in the basis functions. To address this issue, Okayama and Hara proposed Sinc-collocation methods, which do not include any special function in the basis functions. This study conducts error analyses of these methods.

北京阿比特科技有限公司