Over the past few years, monocular depth estimation and completion have been paid more and more attention from the computer vision community because of their widespread applications. In this paper, we introduce novel physics (geometry)-driven deep learning frameworks for these two tasks by assuming that 3D scenes are constituted with piece-wise planes. Instead of directly estimating the depth map or completing the sparse depth map, we propose to estimate the surface normal and plane-to-origin distance maps or complete the sparse surface normal and distance maps as intermediate outputs. To this end, we develop a normal-distance head that outputs pixel-level surface normal and distance. Meanwhile, the surface normal and distance maps are regularized by a developed plane-aware consistency constraint, which are then transformed into depth maps. Furthermore, we integrate an additional depth head to strengthen the robustness of the proposed frameworks. Extensive experiments on the NYU-Depth-v2, KITTI and SUN RGB-D datasets demonstrate that our method exceeds in performance prior state-of-the-art monocular depth estimation and completion competitors. The source code will be available at //github.com/ShuweiShao/NDDepth.
Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.
Decentralized identity mechanisms endeavor to endow users with complete sovereignty over their digital assets within the Web3 ecosystem. Unfortunately, this benefit frequently comes at the expense of users' credential and identity privacy. Additionally, existing schemes fail to resist Sybil attacks that have long plagued Web3, and lack reasonable key recovery mechanisms to regain control of digital assets after loss. In this work, we propose LinkDID, a privacy-preserving, Sybil-resistant, and key-recoverable decentralized identity scheme that supports selective disclosure of credentials for arbitrary predicates while maintaining privacy for credentials and identities. Through an identifier association mechanism, LinkDID can privately and forcibly aggregate users' identifiers, providing Sybil resistance without relying on any external data or collateral from benign users. To enable key recovery, LinkDID permits users to establish proofs of ownership for identifiers with lost keys and request an update of corresponding keys from the decentralized ledger. We provide a detailed theoretical analysis and security proofs of LinkDID, along with an exhaustive performance evaluation that shows its ability to complete interactions in less than 10 seconds on consumer-grade devices.
The correctness of a compiler affects the correctness of every program written in the language, and thus must be thoroughly evaluated. Existing automatic compiler testing methods however either rely on weak oracles (e.g., a program behaves the same if only dead code is modified), or require substantial initial effort (e.g., having a complete operational language semantics). While the former prevents a comprehensive correctness evaluation, the latter makes those methods irrelevant in practice. In this work, we propose an axiomatic semantics based approach for testing compilers, called PTE. The idea is to incrementally develop a set of ``axioms'' capturing anecdotes of the language semantics in the form of \emph{(\textbf{p}recondition, \textbf{t}ransformation, \textbf{e}xpectation) triples, which allows us to test the compiler automatically.} Such axioms are written in the same language whose compiler is under test, and can be developed either based on the language specification, or by generalizing the bug reports. PTE has been applied to a newly developed compiler (i.e., Cangjie) and a mature compiler (i.e., Java), and successfully identified 42 implementation bugs and 9 potential language design issues.
In the paradigm of choreographic programming, the overall behaviour of a distributed system is coded as a choreography from a global viewpoint. The choreography can then be automatically projected (compiled) to a correct implementation for each participant. This paradigm is interesting because it relieves the programmer from manually writing the separate send and receive actions performed by participants, which simplifies development and avoids communication mismatches. However, the applicability of choreographic programming in the real world remains largely unexplored. The reason is twofold. First, while there have been several proposals of choreographic programming languages, none of these languages have been used to implement a realistic, widely-used protocol. Thus there is a lack of experience on how realistic choreographic programs are structured and on the relevance of the different features explored in theoretical models. Second, applications of choreographic programming shown so far are intrusive, in the sense that each participant must use exactly the code projected from the choreography. This prevents using the code generated from choreographies with existing third-party implementations of some participants, something that is very beneficial for testing or might even come as a requirement. This paper addresses both problems. In particular, we carry out the first development in choreographic programming of a widespread real-world protocol: the Internet Relay Chat (IRC) client--server protocol. The development is based on Choral, an object-oriented higher-order choreographic programming language (choreographies can be parametric on choreographies and carry state). We find that two of Choral's features are key to our implementation: higher-order choreographies are used for modelling the complex interaction patterns that arise due to IRC's asynchronous nature, while user-definable communication semantics are relevant for achieving interoperability with third-party implementations. In the process we also discover a missing piece: the capability of statically detecting that choices on alternative distributed behaviours are appropriately communicated by means of message types, for which we extend the Choral compiler with an elegant solution based on subtyping. Our Choral implementation of IRC arguably represents a milestone for choreographic programming, since it is the first empirical evidence that the paradigm can be used to faithfully codify protocols found `in the wild'. We observe that the choreographic approach reduces the interaction complexity of our program, compared to the traditional approach of writing separate send and receive actions. To check that our implementation is indeed interoperable with third-party software, we test it against publicly available conformance tests for IRC and some of the most popular IRC client and server software. We also evaluate the performance and scalability of our implementation by performing performance tests. Our experience shows that even if choreographic programming is still in its early life, it can already be applied to a realistic setting.
As an important component of the detector localization branch, bounding box regression loss plays a significant role in object detection tasks. The existing bounding box regression methods usually consider the geometric relationship between the GT box and the predicted box, and calculate the loss by using the relative position and shape of the bounding boxes, while ignoring the influence of inherent properties such as the shape and scale of the bounding boxes on bounding box regression. In order to make up for the shortcomings of existing research, this article proposes a bounding box regression method that focuses on the shape and scale of the bounding box itself. Firstly, we analyzed the regression characteristics of the bounding boxes and found that the shape and scale factors of the bounding boxes themselves will have an impact on the regression results. Based on the above conclusions, we propose the Shape IoU method, which can calculate the loss by focusing on the shape and scale of the bounding box itself, thereby making the bounding box regression more accurate. Finally, we validated our method through a large number of comparative experiments, which showed that our method can effectively improve detection performance and outperform existing methods, achieving state-of-the-art performance in different detection tasks.Code is available at //github.com/malagoutou/Shape-IoU
We present FerKD, a novel efficient knowledge distillation framework that incorporates partial soft-hard label adaptation coupled with a region-calibration mechanism. Our approach stems from the observation and intuition that standard data augmentations, such as RandomResizedCrop, tend to transform inputs into diverse conditions: easy positives, hard positives, or hard negatives. In traditional distillation frameworks, these transformed samples are utilized equally through their predictive probabilities derived from pretrained teacher models. However, merely relying on prediction values from a pretrained teacher, a common practice in prior studies, neglects the reliability of these soft label predictions. To address this, we propose a new scheme that calibrates the less-confident regions to be the context using softened hard groundtruth labels. Our approach involves the processes of hard regions mining + calibration. We demonstrate empirically that this method can dramatically improve the convergence speed and final accuracy. Additionally, we find that a consistent mixing strategy can stabilize the distributions of soft supervision, taking advantage of the soft labels. As a result, we introduce a stabilized SelfMix augmentation that weakens the variation of the mixed images and corresponding soft labels through mixing similar regions within the same image. FerKD is an intuitive and well-designed learning system that eliminates several heuristics and hyperparameters in former FKD solution. More importantly, it achieves remarkable improvement on ImageNet-1K and downstream tasks. For instance, FerKD achieves 81.2% on ImageNet-1K with ResNet-50, outperforming FKD and FunMatch by remarkable margins. Leveraging better pre-trained weights and larger architectures, our finetuned ViT-G14 even achieves 89.9%. Our code is available at //github.com/szq0214/FKD/tree/main/FerKD.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.