As an important component of the detector localization branch, bounding box regression loss plays a significant role in object detection tasks. The existing bounding box regression methods usually consider the geometric relationship between the GT box and the predicted box, and calculate the loss by using the relative position and shape of the bounding boxes, while ignoring the influence of inherent properties such as the shape and scale of the bounding boxes on bounding box regression. In order to make up for the shortcomings of existing research, this article proposes a bounding box regression method that focuses on the shape and scale of the bounding box itself. Firstly, we analyzed the regression characteristics of the bounding boxes and found that the shape and scale factors of the bounding boxes themselves will have an impact on the regression results. Based on the above conclusions, we propose the Shape IoU method, which can calculate the loss by focusing on the shape and scale of the bounding box itself, thereby making the bounding box regression more accurate. Finally, we validated our method through a large number of comparative experiments, which showed that our method can effectively improve detection performance and outperform existing methods, achieving state-of-the-art performance in different detection tasks.Code is available at //github.com/malagoutou/Shape-IoU
The work of neural retrieval so far focuses on ranking short texts and is challenged with long documents. There are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. Wikipedia articles, research papers, etc. We propose and name this task \emph{Document-Aware Passage Retrieval} (DAPR). While analyzing the errors of the State-of-The-Art (SoTA) passage retrievers, we find the major errors (53.5\%) are due to missing document context. This drives us to build a benchmark for this task including multiple datasets from heterogeneous domains. In the experiments, we extend the SoTA passage retrievers with document context via (1) hybrid retrieval with BM25 and (2) contextualized passage representations, which inform the passage representation with document context. We find despite that hybrid retrieval performs the strongest on the mixture of the easy and the hard queries, it completely fails on the hard queries that require document-context understanding. On the other hand, contextualized passage representations (e.g. prepending document titles) achieve good improvement on these hard queries, but overall they also perform rather poorly. Our created benchmark enables future research on developing and comparing retrieval systems for the new task. The code and the data are available at //github.com/UKPLab/arxiv2023-dapr.
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT, offering potential applications extending into specialized engineering modeling, especially physics-based building energy modeling. This paper investigates the innovative integration of large language models with building energy modeling software, focusing specifically on the fusion of ChatGPT with EnergyPlus. A literature review is first conducted to reveal a growing trend of incorporating of large language models in engineering modeling, albeit limited research on their application in building energy modeling. We underscore the potential of large language models in addressing building energy modeling challenges and outline potential applications including 1) simulation input generation, 2) simulation output analysis and visualization, 3) conducting error analysis, 4) co-simulation, 5) simulation knowledge extraction and training, and 6) simulation optimization. Three case studies reveal the transformative potential of large language models in automating and optimizing building energy modeling tasks, underscoring the pivotal role of artificial intelligence in advancing sustainable building practices and energy efficiency. The case studies demonstrate that selecting the right large language model techniques is essential to enhance performance and reduce engineering efforts. Besides direct use of large language models, three specific techniques were utilized: 1) prompt engineering, 2) retrieval-augmented generation, and 3) multi-agent large language models. The findings advocate a multidisciplinary approach in future artificial intelligence research, with implications extending beyond building energy modeling to other specialized engineering modeling.
Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at \url{//mobilespeech.github.io/} .
Molecular Relational Learning (MRL), aiming to understand interactions between molecular pairs, plays a pivotal role in advancing biochemical research. Recently, the adoption of large language models (LLMs), known for their vast knowledge repositories and advanced logical inference capabilities, has emerged as a promising way for efficient and effective MRL. Despite their potential, these methods predominantly rely on the textual data, thus not fully harnessing the wealth of structural information inherent in molecular graphs. Moreover, the absence of a unified framework exacerbates the issue of information underutilization, as it hinders the sharing of interaction mechanism learned across diverse datasets. To address these challenges, this work proposes a novel LLM-based multi-modal framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory, termed MolTC, which effectively integrate graphical information of two molecules in pair. For achieving a unified MRL, MolTC innovatively develops a dynamic parameter-sharing strategy for cross-dataset information sharing. Moreover, to train MolTC efficiently, we introduce a Multi-hierarchical CoT concept to refine its training paradigm, and conduct a comprehensive Molecular Interactive Instructions dataset for the development of biochemical LLMs involving MRL. Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines. Code is available at //github.com/MangoKiller/MolTC.
The imperative need to scale computation across numerous nodes highlights the significance of efficient parallel computing, particularly in the realm of Message Passing Interface (MPI) integration. The challenging parallel programming task of generating MPI-based parallel programs has remained unexplored. This study first investigates the performance of state-of-the-art language models in generating MPI-based parallel programs. Findings reveal that widely used models such as GPT-3.5 and PolyCoder (specialized multi-lingual code models) exhibit notable performance degradation, when generating MPI-based programs compared to general-purpose programs. In contrast, domain-specific models such as MonoCoder, which are pretrained on MPI-related programming languages of C and C++, outperform larger models. Subsequently, we introduce a dedicated downstream task of MPI-based program generation by fine-tuning MonoCoder on HPCorpusMPI. We call the resulting model as MPIrigen. We propose an innovative preprocessing for completion only after observing the whole code, thus enabling better completion with a wider context. Comparative analysis against GPT-3.5 zero-shot performance, using a novel HPC-oriented evaluation method, demonstrates that MPIrigen excels in generating accurate MPI functions up to 0.8 accuracy in location and function predictions, and with more than 0.9 accuracy for argument predictions. The success of this tailored solution underscores the importance of domain-specific fine-tuning in optimizing language models for parallel computing code generation, paving the way for a new generation of automatic parallelization tools. The sources of this work are available at our GitHub MPIrigen repository: //github.com/Scientific-Computing-Lab-NRCN/MPI-rigen
The human-like automatic deductive reasoning has always been one of the most challenging open problems in the interdiscipline of mathematics and artificial intelligence. This paper is the third in a series of our works. We built a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning. The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods from the feedback of a formalized environment, without the need for human supervision. It leverages a pre-trained natural language model to establish a policy network for theorem selection and employ Monte Carlo Tree Search for heuristic exploration. The symbolic part is a reinforcement learning environment based on geometry formalization theory and FormalGeo\cite{FormalGeo}, which models GPS as a Markov Decision Process\cite{MDP}. In this formal symbolic system, the known conditions and objectives of the problem form the state space, while the set of theorems forms the action space. Leveraging FGeoDRL, we have achieved readable and verifiable automated solutions to geometric problems. Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40\%. The project is available at //github.com/PersonNoName/FGeoDRL.
We present ARTrackV2, which integrates two pivotal aspects of tracking: determining where to look (localization) and how to describe (appearance analysis) the target object across video frames. Building on the foundation of its predecessor, ARTrackV2 extends the concept by introducing a unified generative framework to "read out" object's trajectory and "retell" its appearance in an autoregressive manner. This approach fosters a time-continuous methodology that models the joint evolution of motion and visual features, guided by previous estimates. Furthermore, ARTrackV2 stands out for its efficiency and simplicity, obviating the less efficient intra-frame autoregression and hand-tuned parameters for appearance updates. Despite its simplicity, ARTrackV2 achieves state-of-the-art performance on prevailing benchmark datasets while demonstrating remarkable efficiency improvement. In particular, ARTrackV2 achieves AO score of 79.5\% on GOT-10k, and AUC of 86.1\% on TrackingNet while being $3.6 \times$ faster than ARTrack. The code will be released.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.