亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the last three to five years, it has become possible to generate machine learning synthetic data for healthcare-related uses. However, concerns have been raised about potential negative factors associated with the possibilities of artificial dataset generation. These include the potential misuse of generative artificial intelligence (AI) in fields such as cybercrime, the use of deepfakes and fake news to deceive or manipulate, and displacement of human jobs across various market sectors. Here, we consider both current and future positive advances and possibilities with synthetic datasets. Synthetic data offers significant benefits, particularly in data privacy, research, in balancing datasets and reducing bias in machine learning models. Generative AI is an artificial intelligence genre capable of creating text, images, video or other data using generative models. The recent explosion of interest in GenAI was heralded by the invention and speedy move to use of large language models (LLM). These computational models are able to achieve general-purpose language generation and other natural language processing tasks and are based on transformer architectures, which made an evolutionary leap from previous neural network architectures. Fuelled by the advent of improved GenAI techniques and wide scale usage, this is surely the time to consider how synthetic data can be used to advance infectious disease research. In this commentary we aim to create an overview of the current and future position of synthetic data in infectious disease research.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 錯誤率 · CASES · 推斷 · 統計方法 ·
2024 年 8 月 22 日

One justification for preregistering research hypotheses, methods, and analyses is that it improves the transparent evaluation of the severity of hypothesis tests. In this article, I consider two cases in which preregistration does not improve this evaluation. First, I argue that, although preregistration can facilitate the transparent evaluation of severity in Mayo's error statistical philosophy of science, it does not facilitate this evaluation in Popper's theory-centric philosophy. To illustrate, I show that associated concerns about Type I error rate inflation are only relevant in the error statistical approach and not in a theory-centric approach. Second, I argue that a preregistered test procedure that allows deviations in its implementation does not provide a more transparent evaluation of Mayoian severity than a non-preregistered procedure. In particular, I argue that sample-based validity-enhancing deviations cause an unknown inflation of the test procedure's Type I (familywise) error rate and, consequently, an unknown reduction in its capability to license inferences severely. I conclude that preregistration does not improve the transparent evaluation of severity in Popper's philosophy of science or when deviations are allowed.

Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction: Uncertainty from stochasticity in the data (aleatoric), or uncertainty from limitations of the model (epistemic). Generally, each uncertainty is evaluated in isolation, but this obscures the fact that they are often not truly disentangled. This work proposes a set of experiments to evaluate disentanglement of aleatoric and epistemic uncertainty, and uses these methods to compare two competing formulations for disentanglement (the Information Theoretic approach, and the Gaussian Logits approach). The results suggest that the Information Theoretic approach gives better disentanglement, but that either predicted source of uncertainty is still largely contaminated by the other for both methods. We conclude that with the current methods for disentangling, aleatoric and epistemic uncertainty are not reliably separated, and we provide a clear set of experimental criteria that good uncertainty disentanglement should follow.

Deep neural networks have recently achieved promising performance in the vein recognition task and have shown an increasing application trend, however, they are prone to adversarial perturbation attacks by adding imperceptible perturbations to the input, resulting in making incorrect recognition. To address this issue, we propose a novel defense model named MsMemoryGAN, which aims to filter the perturbations from adversarial samples before recognition. First, we design a multi-scale autoencoder to achieve high-quality reconstruction and two memory modules to learn the detailed patterns of normal samples at different scales. Second, we investigate a learnable metric in the memory module to retrieve the most relevant memory items to reconstruct the input image. Finally, the perceptional loss is combined with the pixel loss to further enhance the quality of the reconstructed image. During the training phase, the MsMemoryGAN learns to reconstruct the input by merely using fewer prototypical elements of the normal patterns recorded in the memory. At the testing stage, given an adversarial sample, the MsMemoryGAN retrieves its most relevant normal patterns in memory for the reconstruction. Perturbations in the adversarial sample are usually not reconstructed well, resulting in purifying the input from adversarial perturbations. We have conducted extensive experiments on two public vein datasets under different adversarial attack methods to evaluate the performance of the proposed approach. The experimental results show that our approach removes a wide variety of adversarial perturbations, allowing vein classifiers to achieve the highest recognition accuracy.

Despite great performance on many tasks, language models (LMs) still struggle with reasoning, sometimes providing responses that cannot possibly be true because they stem from logical incoherence. We call such responses \textit{strong hallucinations} and prove that they follow from an LM's computation of its internal representations for logical operators and outputs from those representations. Focusing on negation, we provide a novel solution in which negation is treated not as another element of a latent representation, but as \textit{an operation over an LM's latent representations that constrains how they may evolve}. We show that our approach improves model performance in cloze prompting and natural language inference tasks with negation without requiring training on sparse negative data.

We prove non asymptotic total variation estimates for the kinetic Langevin algorithm in high dimension when the target measure satisfies a Poincar\'e inequality and has gradient Lipschitz potential. The main point is that the estimate improves significantly upon the corresponding bound for the non kinetic version of the algorithm, due to Dalalyan. In particular the dimension dependence drops from $O(n)$ to $O(\sqrt n)$.

Clinical artificial intelligence (AI) methods have been proposed for predicting social behaviors which could be reasonably understood from patient-reported data. This raises ethical concerns about respect, privacy, and patient awareness/control over how their health data is used. Ethical concerns surrounding clinical AI systems for social behavior verification were divided into three main categories: (1) the use of patient data retrospectively without informed consent for the specific task of verification, (2) the potential for inaccuracies or biases within such systems, and (3) the impact on trust in patient-provider relationships with the introduction of automated AI systems for fact-checking. Additionally, this report showed the simulated misuse of a verification system and identified a potential LLM bias against patient-reported information in favor of multimodal data, published literature, and the outputs of other AI methods (i.e., AI self-trust). Finally, recommendations were presented for mitigating the risk that AI verification systems will cause harm to patients or undermine the purpose of the healthcare system.

Speech rate has been shown to vary across social categories such as gender, age, and dialect, while also being conditioned by properties of speech planning. The effect of utterance length, where speech rate is faster and less variable for longer utterances, has also been shown to reduce the role of social factors once it has been accounted for, leaving unclear the relationship between social factors and speech production in conditioning speech rate. Through modelling of speech rate across 13 English speech corpora, it is found that utterance length has the largest effect on speech rate, though this effect itself varies little across corpora and speakers. While age and gender also modulate speech rate, their effects are much smaller in magnitude. These findings suggest utterance length effects may be conditioned by articulatory and perceptual constraints, and that social influences on speech rate should be interpreted in the broader context of how speech rate variation is structured.

Could the generalized adoption of the COARA principles make administrative research evaluation socially desirable and solve all its problems? The answer to this question is no. To reach this conclusion, two main arguments are discussed. The first characterises COARA as a form of 'technocracy' perfectly consistent with a neo-liberal view of research. The second consists in the adoption of Philip Kitcher's idea of well-ordered science. It is argued that administrative evaluation of research, even if correct on the basis of COARA principles, is at odds with the principles of well-ordered science since it cannot escape neither the tyranny of expertise nor the tyranny of ignorance. These two arguments allow to suggest limiting administrative evaluation to the bare minimum (recruitment of researchers and funding of projects), and to focus attention mainly to the fairness of evaluation procedures.

In this paper we study probabilistic and neural network approximations for solutions to Poisson equation subject to Holder data in general bounded domains of $\mathbb{R}^d$. We aim at two fundamental goals. The first, and the most important, we show that the solution to Poisson equation can be numerically approximated in the sup-norm by Monte Carlo methods, and that this can be done highly efficiently if we use a modified version of the walk on spheres algorithm as an acceleration method. This provides estimates which are efficient with respect to the prescribed approximation error and with polynomial complexity in the dimension and the reciprocal of the error. A crucial feature is that the overall number of samples does not not depend on the point at which the approximation is performed. As a second goal, we show that the obtained Monte Carlo solver renders in a constructive way ReLU deep neural network (DNN) solutions to Poisson problem, whose sizes depend at most polynomialy in the dimension $d$ and in the desired error. In fact we show that the random DNN provides with high probability a small approximation error and low polynomial complexity in the dimension.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

北京阿比特科技有限公司