Despite great performance on many tasks, language models (LMs) still struggle with reasoning, sometimes providing responses that cannot possibly be true because they stem from logical incoherence. We call such responses \textit{strong hallucinations} and prove that they follow from an LM's computation of its internal representations for logical operators and outputs from those representations. Focusing on negation, we provide a novel solution in which negation is treated not as another element of a latent representation, but as \textit{an operation over an LM's latent representations that constrains how they may evolve}. We show that our approach improves model performance in cloze prompting and natural language inference tasks with negation without requiring training on sparse negative data.
Large language models have demonstrated promising capabilities upon scaling up parameters. However, serving large language models incurs substantial computation and memory movement costs due to their large scale. Quantization methods have been employed to reduce service costs and latency. Nevertheless, outliers in activations hinder the development of INT4 weight-activation quantization. Existing approaches separate outliers and normal values into two matrices or migrate outliers from activations to weights, suffering from high latency or accuracy degradation. Based on observing activations from large language models, outliers can be classified into channel-wise and spike outliers. In this work, we propose Rotated Runtime Smooth (RRS), a plug-and-play activation smoother for quantization, consisting of Runtime Smooth and the Rotation operation. Runtime Smooth (RS) is introduced to eliminate channel-wise outliers by smoothing activations with channel-wise maximums during runtime. The rotation operation can narrow the gap between spike outliers and normal values, alleviating the effect of victims caused by channel-wise smoothing. The proposed method outperforms the state-of-the-art method in the LLaMA and Qwen families and improves WikiText-2 perplexity from 57.33 to 6.66 for INT4 inference.
We develop a statistical framework to evaluate evidence of alleged cheating with illegal signalling in sports from a forensic perspective. We explain why instead of a frequenstic procedure, a Bayesian approach is called for. We apply this framework to cases of alleged cheating in professional bridge and professional baseball. The diversity of these applications illustrates the generality of the method.
Quantum learning models hold the potential to bring computational advantages over the classical realm. As powerful quantum servers become available on the cloud, ensuring the protection of clients' private data becomes crucial. By incorporating quantum homomorphic encryption schemes, we present a general framework that enables quantum delegated and federated learning with a computation-theoretical data privacy guarantee. We show that learning and inference under this framework feature substantially lower communication complexity compared with schemes based on blind quantum computing. In addition, in the proposed quantum federated learning scenario, there is less computational burden on local quantum devices from the client side, since the server can operate on encrypted quantum data without extracting any information. We further prove that certain quantum speedups in supervised learning carry over to private delegated learning scenarios employing quantum kernel methods. Our results provide a valuable guide toward privacy-guaranteed quantum learning on the cloud, which may benefit future studies and security-related applications.
Causal language models acquire vast amount of knowledge from general text corpus during pretraining, but the efficiency of knowledge learning is known to be unsatisfactory, especially when learning from knowledge-dense and small-sized corpora. The deficiency can come from long-distance dependencies which are hard to capture by language models, and overfitting to co-occurrence patterns and distracting clues in the training text. To address these issues, the paper proposes a method to enhance knowledge learning during language model pretraining, by enhancing elusive but important clues in text discovered by the language model themselves. We found that larger language models pay more attention to non-obvious but important clues, which are often overlooked by smaller language models. Therefore, we can identify these clues by contrasting the attention weights of large and small language models. We use the identified clues as a guide to perform token-dropout data augmentation on the training text, and observed a significant boost in both small and large models' performance in fact memorization. This shows that the behavior contrast between more and less-performant language models contains important clues for knowledge learning, and it can be ``amplified" for a straight-forward improvement in knowledge learning efficiency.
Predicting the response of nonlinear dynamical systems subject to random, broadband excitation is important across a range of scientific disciplines, such as structural dynamics and neuroscience. Building data-driven models requires experimental measurements of the system input and output, but it can be difficult to determine whether inaccuracies in the model stem from modelling errors or noise. This paper presents a novel method to identify the causal component of the input-output data from measurements of a system in the presence of output noise, as a function of frequency, without needing a high fidelity model. An output prediction, calculated using an available model, is optimally combined with noisy measurements of the output to predict the input to the system. The parameters of the algorithm balance the two output signals and are utilised to calculate a nonlinear coherence metric as a measure of causality. This method is applicable to a broad class of nonlinear dynamical systems. There are currently no solutions to this problem in the absence of a complete benchmark model.
This paper advances the understanding of how the size of a machine learning model affects its vulnerability to poisoning, despite state-of-the-art defenses. Given isotropic random honest feature vectors and the geometric median (or clipped mean) as the robust gradient aggregator rule, we essentially prove that, perhaps surprisingly, linear and logistic regressions with $D \geq 169 H^2/P^2$ parameters are subject to arbitrary model manipulation by poisoners, where $H$ and $P$ are the numbers of honestly labeled and poisoned data points used for training. Our experiments go on exposing a fundamental tradeoff between augmenting model expressivity and increasing the poisoners' attack surface, on both synthetic data, and on MNIST & FashionMNIST data for linear classifiers with random features. We also discuss potential implications for source-based learning and neural nets.
We present a random measure approach for modeling exploration, i.e., the execution of measure-valued controls, in continuous-time reinforcement learning (RL) with controlled diffusion and jumps. First, we consider the case when sampling the randomized control in continuous time takes place on a discrete-time grid and reformulate the resulting stochastic differential equation (SDE) as an equation driven by suitable random measures. The construction of these random measures makes use of the Brownian motion and the Poisson random measure (which are the sources of noise in the original model dynamics) as well as the additional random variables, which are sampled on the grid for the control execution. Then, we prove a limit theorem for these random measures as the mesh-size of the sampling grid goes to zero, which leads to the grid-sampling limit SDE that is jointly driven by white noise random measures and a Poisson random measure. We also argue that the grid-sampling limit SDE can substitute the exploratory SDE and the sample SDE of the recent continuous-time RL literature, i.e., it can be applied for the theoretical analysis of exploratory control problems and for the derivation of learning algorithms.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language