We present a random measure approach for modeling exploration, i.e., the execution of measure-valued controls, in continuous-time reinforcement learning (RL) with controlled diffusion and jumps. First, we consider the case when sampling the randomized control in continuous time takes place on a discrete-time grid and reformulate the resulting stochastic differential equation (SDE) as an equation driven by suitable random measures. The construction of these random measures makes use of the Brownian motion and the Poisson random measure (which are the sources of noise in the original model dynamics) as well as the additional random variables, which are sampled on the grid for the control execution. Then, we prove a limit theorem for these random measures as the mesh-size of the sampling grid goes to zero, which leads to the grid-sampling limit SDE that is jointly driven by white noise random measures and a Poisson random measure. We also argue that the grid-sampling limit SDE can substitute the exploratory SDE and the sample SDE of the recent continuous-time RL literature, i.e., it can be applied for the theoretical analysis of exploratory control problems and for the derivation of learning algorithms.
Dealing with uncertainty in optimization parameters is an important and longstanding challenge. Typically, uncertain parameters are predicted accurately, and then a deterministic optimization problem is solved. However, the decisions produced by this so-called \emph{predict-then-optimize} procedure can be highly sensitive to uncertain parameters. In this work, we contribute to recent efforts in producing \emph{decision-focused} predictions, i.e., to build predictive models that are constructed with the goal of minimizing a \emph{regret} measure on the decisions taken with them. We begin by formulating the exact expected regret minimization as a pessimistic bilevel optimization model. Then, we establish NP-completeness of this problem, even in a heavily restricted case. Using duality arguments, we reformulate it as a non-convex quadratic optimization problem. Finally, we show various computational techniques to achieve tractability. We report extensive computational results on shortest-path instances with uncertain cost vectors. Our results indicate that our approach can improve training performance over the approach of Elmachtoub and Grigas (2022), a state-of-the-art method for decision-focused learning.
Quantum state preparation, as a general process of loading classical data to quantum device, is essential for end-to-end implementation of quantum algorithms. Yet, existing methods suffer from either high circuit depth or complicated hardware, limiting their practicality and robustness. In this work, we overcome these limitations with a bucket-brigade approach. The tree architectures of our hardware represents the simplest connectivity required for achieving sub-exponential circuit depth. Leveraging the bucket-brigade mechanism that can suppress the error propagation between different branches, our approach exhibit exponential improvement on the robustness compared to existing depth-optimal methods. More specifically, the infidelity scales as $O(\text{polylog}(N))$ with data size $N$, as oppose to $O(N)$ for conventional methods. Moreover, our approach is the first to simultaneously achieve linear Clifford$+T$ circuit depth, gate count number, and space-time allocation. These advancements offer the opportunity for processing big data in both near-term and fault-tolerant quantum devices.
In causal inference, many estimands of interest can be expressed as a linear functional of the outcome regression function; this includes, for example, average causal effects of static, dynamic and stochastic interventions. For learning such estimands, in this work, we propose novel debiased machine learning estimators that are doubly robust asymptotically linear, thus providing not only doubly robust consistency but also facilitating doubly robust inference (e.g., confidence intervals and hypothesis tests). To do so, we first establish a key link between calibration, a machine learning technique typically used in prediction and classification tasks, and the conditions needed to achieve doubly robust asymptotic linearity. We then introduce calibrated debiased machine learning (C-DML), a unified framework for doubly robust inference, and propose a specific C-DML estimator that integrates cross-fitting, isotonic calibration, and debiased machine learning estimation. A C-DML estimator maintains asymptotic linearity when either the outcome regression or the Riesz representer of the linear functional is estimated sufficiently well, allowing the other to be estimated at arbitrarily slow rates or even inconsistently. We propose a simple bootstrap-assisted approach for constructing doubly robust confidence intervals. Our theoretical and empirical results support the use of C-DML to mitigate bias arising from the inconsistent or slow estimation of nuisance functions.
In pursuit of enhancing the comprehensive efficiency of production systems, our study focused on the joint optimization problem of scheduling and machine maintenance in scenarios where product rework occurs. The primary challenge lies in the interdependence between product \underline{q}uality, machine \underline{r}eliability, and \underline{p}roduction scheduling, compounded by the uncertainties from machine degradation and product quality, which is prevalent in sophisticated manufacturing systems. To address this issue, we investigated the dynamic relationship among these three aspects, named as QRP-co-effect. On this basis, we constructed an optimization model that integrates production scheduling, machine maintenance, and product rework decisions, encompassing the context of stochastic degradation and product quality uncertainties within a mixed-integer programming problem. To effectively solve this problem, we proposed a dual-module solving framework that integrates planning and evaluation for solution improvement via dynamic communication. By analyzing the structural properties of this joint optimization problem, we devised an efficient solving algorithm with an interactive mechanism that leverages \emph{in-situ} condition information regarding the production system's state and computational resources. The proposed methodology has been validated through comparative and ablation experiments. The experimental results demonstrated the significant enhancement of production system efficiency, along with a reduction in machine maintenance costs in scenarios involving rework.
Aperiodic autocorrelation is an important indicator of performance of sequences used in communications, remote sensing, and scientific instrumentation. Knowing a sequence's autocorrelation function, which reports the autocorrelation at every possible translation, is equivalent to knowing the magnitude of the sequence's Fourier transform. The phase problem is the difficulty in resolving this lack of phase information. We say that two sequences are equicorrelational to mean that they have the same aperiodic autocorrelation function. Sequences used in technological applications often have restrictions on their terms: they are not arbitrary complex numbers, but come from a more restricted alphabet. For example, binary sequences involve terms equal to only $+1$ and $-1$. We investigate the necessary and sufficient conditions for two sequences to be equicorrelational, where we take their alphabet into consideration. There are trivial forms of equicorrelationality arising from modifications that predictably preserve the autocorrelation, for example, negating a binary sequence or reversing the order of its terms. By a search of binary sequences up to length $44$, we find that nontrivial equicorrelationality among binary sequences does occur, but is rare. An integer $n$ is said to be equivocal when there are binary sequences of length $n$ that are nontrivially equicorrelational; otherwise $n$ is unequivocal. For $n \leq 44$, we found that the unequivocal lengths are $1$--$8$, $10$, $11$, $13$, $14$, $19$, $22$, $23$, $26$, $29$, $37$, and $38$. We pose open questions about the finitude of unequivocal numbers and the probability of nontrivial equicorrelationality occurring among binary sequences.
Synthetic control methods have been widely used for evaluating policy effects in comparative case studies. However, most existing synthetic control methods implicitly rule out interference effects on the untreated units, and their validity may be jeopardized in the presence of interference. In this paper, we propose a novel synthetic control method, which admits interference but does not require modeling the interference structure. Identification of the effects is achieved under the assumption that the number of interfered units is no larger than half of the total number of units minus the dimension of confounding factors. We propose consistent and asymptotically normal estimation and establish statistical inference for the direct and interference effects averaged over post-intervention periods. We evaluate the performance of our method and compare it to competing methods via numerical experiments. A real data analysis, evaluating the effects of the announcement of relocating the US embassy to Jerusalem on the number of Middle Eastern conflicts, provides empirical evidence that the announcement not only increases the number of conflicts in Israel-Palestine but also has interference effects on several other Middle Eastern countries.
We show that confidence intervals in a variance component model, with asymptotically correct uniform coverage probability, can be obtained by inverting certain test-statistics based on the score for the restricted likelihood. The results apply in settings where the variance is near or at the boundary of the parameter set. Simulations indicate the proposed test-statistics are approximately pivotal and lead to confidence intervals with near-nominal coverage even in small samples. We illustrate our methods' application in spatially-resolved transcriptomics where we compute approximately 15,000 confidence intervals, used for gene ranking, in less than 4 minutes. In the settings we consider, the proposed method is between two and 28,000 times faster than popular alternatives, depending on how many confidence intervals are computed.
This paper considers the problem of reconstructing missing parts of functions based on their observed segments. It provides, for Gaussian processes and arbitrary bijective transformations thereof, theoretical expressions for the $L^2$-optimal reconstruction of the missing parts. These functions are obtained as solutions of explicit integral equations. In the discrete case, approximations of the solutions provide consistent expressions of all missing values of the processes. Rates of convergence of these approximations, under extra assumptions on the transformation function, are provided. In the case of Gaussian processes with a parametric covariance structure, the estimation can be conducted separately for each function, and yields nonlinear solutions in presence of memory. Simulated examples show that the proposed reconstruction indeed fares better than the conventional interpolation methods in various situations.
This study investigates the robustness of graph embedding methods for community detection in the face of network perturbations, specifically edge deletions. Graph embedding techniques, which represent nodes as low-dimensional vectors, are widely used for various graph machine learning tasks due to their ability to capture structural properties of networks effectively. However, the impact of perturbations on the performance of these methods remains relatively understudied. The research considers state-of-the-art graph embedding methods from two families: matrix factorization (e.g., LE, LLE, HOPE, M-NMF) and random walk-based (e.g., DeepWalk, LINE, node2vec). Through experiments conducted on both synthetic and real-world networks, the study reveals varying degrees of robustness within each family of graph embedding methods. The robustness is found to be influenced by factors such as network size, initial community partition strength, and the type of perturbation. Notably, node2vec and LLE consistently demonstrate higher robustness for community detection across different scenarios, including networks with degree and community size heterogeneity. These findings highlight the importance of selecting an appropriate graph embedding method based on the specific characteristics of the network and the task at hand, particularly in scenarios where robustness to perturbations is crucial.
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.