Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions, yet their application within the medical field remains insufficiently explored. Previous works mainly focus on the performance of medical knowledge with examinations, which is far from the realistic scenarios, falling short in assessing the abilities of LLMs on clinical tasks. In the quest to enhance the application of Large Language Models (LLMs) in healthcare, this paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS), targeting the gap between traditional LLM evaluations and the nuanced demands of clinical practice. Unlike prior methods that rely on static medical knowledge assessments, AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations. This approach offers a closer approximation to real clinical scenarios and allows for a detailed analysis of LLM behaviors in response to complex patient interactions. Our extensive experimental validation demonstrates the effectiveness of the AIE framework, with outcomes that align well with human evaluations, underscoring its potential to revolutionize medical LLM testing for improved healthcare delivery.
Recent advancements in artificial intelligence have propelled the capabilities of Large Language Models, yet their ability to mimic nuanced human reasoning remains limited. This paper introduces a novel conceptual enhancement to LLMs, termed the Artificial Neuron, designed to significantly bolster cognitive processing by integrating external memory systems. This enhancement mimics neurobiological processes, facilitating advanced reasoning and learning through a dynamic feedback loop mechanism. We propose a unique framework wherein each LLM interaction specifically in solving complex math word problems and common sense reasoning tasks is recorded and analyzed. Incorrect responses are refined using a higher capacity LLM or human in the loop corrections, and both the query and the enhanced response are stored in a vector database, structured much like neuronal synaptic connections. This Artificial Neuron thus serves as an external memory aid, allowing the LLM to reference past interactions and apply learned reasoning strategies to new problems. Our experimental setup involves training with the GSM8K dataset for initial model response generation, followed by systematic refinements through feedback loops. Subsequent testing demonstrated a significant improvement in accuracy and efficiency, underscoring the potential of external memory systems to advance LLMs beyond current limitations. This approach not only enhances the LLM's problem solving precision but also reduces computational redundancy, paving the way for more sophisticated applications of artificial intelligence in cognitive tasks. This paper details the methodology, implementation, and implications of the Artificial Neuron model, offering a transformative perspective on enhancing machine intelligence.
Vision-Large-Language-models(VLMs) have great application prospects in autonomous driving. Despite the ability of VLMs to comprehend and make decisions in complex scenarios, their integration into safety-critical autonomous driving systems poses serious security risks. In this paper, we propose BadVLMDriver, the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects. Unlike existing backdoor attacks against VLMs that rely on digital modifications, BadVLMDriver uses common physical items, such as a red balloon, to induce unsafe actions like sudden acceleration, highlighting a significant real-world threat to autonomous vehicle safety. To execute BadVLMDriver, we develop an automated pipeline utilizing natural language instructions to generate backdoor training samples with embedded malicious behaviors. This approach allows for flexible trigger and behavior selection, enhancing the stealth and practicality of the attack in diverse scenarios. We conduct extensive experiments to evaluate BadVLMDriver for two representative VLMs, five different trigger objects, and two types of malicious backdoor behaviors. BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon. Thus, BadVLMDriver not only demonstrates a critical security risk but also emphasizes the urgent need for developing robust defense mechanisms to protect against such vulnerabilities in autonomous driving technologies.
Robotic assistance has significantly improved the outcomes of open microsurgery and rigid endoscopic surgery, however is yet to make an impact in flexible endoscopic neurosurgery. Some of the most common intracranial procedures for treatment of hydrocephalus and tumors stand to benefit from increased dexterity and reduced invasiveness offered by robotic systems that can navigate in the deep ventricular system of the brain. We review a spectrum of flexible robotic devices, from the traditional highly actuated approach, to more novel and bio-inspired mechanisms for safe navigation. For each technology, we identify the operating principle and are able to evaluate the potential for minimally invasive surgical applications. Overall, rigid-type continuum robots have seen the most development, however, approaches combining rigid and soft robotic principles into innovative devices, are ideally situated to address safety and complexity limitations after future design evolution. We also observe a number of related challenges in the field, from surgeon-robot interfaces to robot evaluation procedures. Fundamentally, the challenges revolve around a guarantee of safety in robotic devices with the prerequisites to assist and improve upon surgical tasks. With innovative designs, materials and evaluation techniques emerging, we see potential impacts in the next 5--10 years.
Foundation models encompass an extensive knowledge base and offer remarkable transferability. However, this knowledge becomes outdated or insufficient over time. The challenge lies in continuously updating foundation models to accommodate novel information while retaining their original capabilities. Leveraging the fact that foundation models have initial knowledge on various tasks and domains, we propose a novel approach that, instead of updating all parameters equally, localizes the updates to a sparse set of parameters relevant to the task being learned. We strike a balance between efficiency and new task performance, while maintaining the transferability and generalizability of foundation models. We extensively evaluate our method on foundational vision-language models with a diverse spectrum of continual learning tasks. Our method achieves improvements on the accuracy of the newly learned tasks up to 7% while preserving the pretraining knowledge with a negligible decrease of 0.9% on a representative control set accuracy.
Large language models (LLMs) have shown complementary strengths in various tasks and instances, motivating the research of ensembling LLMs to push the frontier leveraging the wisdom of the crowd. Existing work achieves this objective via training the extra reward model or fusion model to select or fuse all candidate answers. However, these methods pose a great challenge to the generalizability of the trained models. Besides, existing methods use the textual responses as communication media, ignoring the rich information in the inner representations of neural networks. Therefore, we propose a training-free ensemble framework DEEPEN, averaging the probability distributions outputted by different LLMs. A key challenge in this paradigm is the vocabulary discrepancy between heterogeneous LLMs, which hinders the operation of probability distribution averaging. To address this challenge, DEEPEN maps the probability distribution of each model from the probability space to a universe relative space based on the relative representation theory, and performs aggregation. Then, the result of aggregation is mapped back to the probability space of one LLM via a search-based inverse transformation to determine the generated token. We conduct experiments on the ensemble of various LLMs of 6B to 70B. Experimental results show that DEEPEN achieves consistent improvements across six popular benchmarks involving subject examination, reasoning and knowledge-QA, proving the effectiveness of our approach.
Federated Learning (FL) has emerged as a promising approach for privacy-preserving machine learning, particularly in sensitive domains such as healthcare. In this context, the TRUSTroke project aims to leverage FL to assist clinicians in ischemic stroke prediction. This paper provides an overview of the TRUSTroke FL network infrastructure. The proposed architecture adopts a client-server model with a central Parameter Server (PS). We introduce a Docker-based design for the client nodes, offering a flexible solution for implementing FL processes in clinical settings. The impact of different communication protocols (HTTP or MQTT) on FL network operation is analyzed, with MQTT selected for its suitability in FL scenarios. A control plane to support the main operations required by FL processes is also proposed. The paper concludes with an analysis of security aspects of the FL architecture, addressing potential threats and proposing mitigation strategies to increase the trustworthiness level.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.