We develop algorithms for online linear regression which achieve optimal static and dynamic regret guarantees \emph{even in the complete absence of prior knowledge}. We present a novel analysis showing that a discounted variant of the Vovk-Azoury-Warmuth forecaster achieves dynamic regret of the form $R_{T}(\vec{u})\le O\left(d\log(T)\vee \sqrt{dP_{T}^{\gamma}(\vec{u})T}\right)$, where $P_{T}^{\gamma}(\vec{u})$ is a measure of variability of the comparator sequence, and show that the discount factor achieving this result can be learned on-the-fly. We show that this result is optimal by providing a matching lower bound. We also extend our results to \emph{strongly-adaptive} guarantees which hold over every sub-interval $[a,b]\subseteq[1,T]$ simultaneously.
A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical observations, by focusing the studies on random graph models that are used to represent practical instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good representations of complex real-world networks, by expressing edge probabilities as a function that depends on (heterogeneous) vertex weights and distances in some underlying geometric space that the vertices are distributed in. While most of the parameters of the model are understood well, it was unclear how the dimensionality of the ground space affects the structure of the graphs. In this paper, we complement existing research into the dimension of geometric random graph models and the ongoing study of determining the dimensionality of real-world networks, by studying how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how quickly the decay of the geometry impacts important graph structures. In particular, we study the expected number of cliques of a given size as well as the clique number and characterize phase transitions at which their behavior changes fundamentally. Finally, our insights help in better understanding previous results about the impact of the dimensionality on geometric random graphs.
Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging. In particular, although ODEs are differentiable and would allow for gradient-based parameter optimization, the nonlinear dynamics of ODEs often lead to many local minima and extreme sensitivity to initial conditions. We therefore propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs. By iteratively reducing a noise parameter of the probabilistic integrator, the proposed method converges more reliably to the true parameters. We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
Deep neural networks conventionally employ end-to-end backpropagation for their training process, which lacks biological credibility and triggers a locking dilemma during network parameter updates, leading to significant GPU memory use. Supervised local learning, which segments the network into multiple local blocks updated by independent auxiliary networks. However, these methods cannot replace end-to-end training due to lower accuracy, as gradients only propagate within their local block, creating a lack of information exchange between blocks. To address this issue and establish information transfer across blocks, we propose a Momentum Auxiliary Network (MAN) that establishes a dynamic interaction mechanism. The MAN leverages an exponential moving average (EMA) of the parameters from adjacent local blocks to enhance information flow. This auxiliary network, updated through EMA, helps bridge the informational gap between blocks. Nevertheless, we observe that directly applying EMA parameters has certain limitations due to feature discrepancies among local blocks. To overcome this, we introduce learnable biases, further boosting performance. We have validated our method on four image classification datasets (CIFAR-10, STL-10, SVHN, ImageNet), attaining superior performance and substantial memory savings. Notably, our method can reduce GPU memory usage by more than 45\% on the ImageNet dataset compared to end-to-end training, while achieving higher performance. The Momentum Auxiliary Network thus offers a new perspective for supervised local learning. Our code is available at: //github.com/JunhaoSu0/MAN.
In this note, we provide analytic expressions for the R\'enyi common information of orders in $(1,\infty)$ for the doubly symmetric binary source (DSBS). Until now, analytic expressions for the R\'enyi common information of all orders in $[0,\infty]$ have been completely known for this source. We also consider the R\'enyi common information of all orders in $[-\infty,0)$ and evaluate it for the DSBS. We provide a sufficient condition under which the R\'enyi common information of such orders coincides with Wyner's common information for the DSBS. Based on numerical analysis, we conjecture that there is a certain phase transition as the crossover probability increasing for the R\'enyi common information of negative orders for the DSBS. Our proofs are based on a lemma on splitting of the entropy and the analytic expression of relaxed Wyner's common information.
The Kalman filter (KF) is a state estimation algorithm that optimally combines system knowledge and measurements to minimize the mean squared error of the estimated states. While KF was initially designed for linear systems, numerous extensions of it, such as extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc., have been proposed for nonlinear systems. Although different types of nonlinear KFs have different pros and cons, they all use the same framework of linear KF, which, according to what we found in this paper, tends to give overconfident and less accurate state estimations when the measurement functions are nonlinear. Therefore, in this study, we designed a new framework for nonlinear KFs and showed theoretically and empirically that the new framework estimates the states and covariance matrix more accurately than the old one. The new framework was tested on four different nonlinear KFs and five different tasks, showcasing its ability to reduce the estimation errors by several orders of magnitude in low-measurement-noise conditions, with only about a 10 to 90% increase in computational time. All types of nonlinear KFs can benefit from the new framework, and the benefit will increase as the sensors become more and more accurate in the future. As an example, EKF, the simplest nonlinear KF that was previously believed to work poorly for strongly nonlinear systems, can now provide fast and fairly accurate state estimations with the help of the new framework. The codes are available at //github.com/Shida-Jiang/A-new-framework-for-nonlinear-Kalman-filters.
We present a generalisation of the theory of quantitative algebras of Mardare, Panangaden and Plotkin where (i) the carriers of quantitative algebras are not restricted to be metric spaces and can be arbitrary fuzzy relations or generalised metric spaces, and (ii) the interpretations of the algebraic operations are not required to be nonexpansive. Our main results include: a novel sound and complete proof system, the proof that free quantitative algebras always exist, the proof of strict monadicity of the induced Free-Forgetful adjunction, the result that all monads (on fuzzy relations) that lift finitary monads (on sets) admit a quantitative equational presentation.
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
Cohesive subgraph mining is a fundamental problem in bipartite graph analysis. In reality, relationships between two types of entities often occur at some specific timestamps, which can be modeled as a temporal bipartite graph. However, the temporal information is widely neglected by previous studies. Moreover, directly extending the existing models may fail to find some critical groups in temporal bipartite graphs, which appear in a unilateral (i.e., one-layer) form. To fill the gap, in this paper, we propose a novel model, called maximal \lambda-frequency group (MFG). Given a temporal bipartite graph G=(U,V,E), a vertex set V_S \subseteq V is an MFG if i) there are no less than \lambda timestamps, at each of which V_S can form a (t_U,t_V)-biclique with some vertices in U at the corresponding snapshot, and ii) it is maximal. To solve the problem, a filter-and-verification (FilterV) method is proposed based on the Bron-Kerbosch framework, incorporating novel filtering techniques to reduce the search space and array-based strategy to accelerate the frequency and maximality verification. Nevertheless, the cost of frequency verification in each valid candidate set computation and maximality check could limit the scalability of FilterV to larger graphs. Therefore, we further develop a novel verification-free (VFree) approach by leveraging the advanced dynamic counting structure proposed. Theoretically, we prove that VFree can reduce the cost of each valid candidate set computation in FilterV by a factor of O(|V|). Furthermore, VFree can avoid the explicit maximality verification because of the developed search paradigm. Finally, comprehensive experiments on 15 real-world graphs are conducted to demonstrate the efficiency and effectiveness of the proposed techniques and model.
We introduce and analyze numerical companion matrix methods for the reconstruction of hypersurfaces with crossings from smooth interpolants given unordered or, without loss of generality, value-sorted data. The problem is motivated by the desire to machine learn potential energy surfaces arising in molecular excited state computational chemistry applications. We present simplified models which reproduce the analytically predicted convergence and stability behaviors as well as two application-oriented numerical experiments: the electronic excited states of Graphene featuring Dirac conical cusps and energy surfaces corresponding to a sulfur dioxide ($SO_2$) molecule in different configurations.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.