In recent years, the connections between deep residual networks and first-order Ordinary Differential Equations (ODEs) have been disclosed. In this work, we further bridge the deep neural architecture design with the second-order ODEs and propose a novel reversible neural network, termed as m-RevNet, that is characterized by inserting momentum update to residual blocks. The reversible property allows us to perform backward pass without access to activation values of the forward pass, greatly relieving the storage burden during training. Furthermore, the theoretical foundation based on second-order ODEs grants m-RevNet with stronger representational power than vanilla residual networks, which potentially explains its performance gains. For certain learning scenarios, we analytically and empirically reveal that our m-RevNet succeeds while standard ResNet fails. Comprehensive experiments on various image classification and semantic segmentation benchmarks demonstrate the superiority of our m-RevNet over ResNet, concerning both memory efficiency and recognition performance.
We provide a general framework for studying recurrent neural networks (RNNs) trained by injecting noise into hidden states. Specifically, we consider RNNs that can be viewed as discretizations of stochastic differential equations driven by input data. This framework allows us to study the implicit regularization effect of general noise injection schemes by deriving an approximate explicit regularizer in the small noise regime. We find that, under reasonable assumptions, this implicit regularization promotes flatter minima; it biases towards models with more stable dynamics; and, in classification tasks, it favors models with larger classification margin. Sufficient conditions for global stability are obtained, highlighting the phenomenon of stochastic stabilization, where noise injection can improve stability during training. Our theory is supported by empirical results which demonstrate that the RNNs have improved robustness with respect to various input perturbations.
Pruning is a model compression method that removes redundant parameters in deep neural networks (DNNs) while maintaining accuracy. Most available filter pruning methods require complex treatments such as iterative pruning, features statistics/ranking, or additional optimization designs in the training process. In this paper, we propose a simple and effective regularization strategy from a new perspective of evolution of features, which we call feature flow regularization (FFR), for improving structured sparsity and filter pruning in DNNs. Specifically, FFR imposes controls on the gradient and curvature of feature flow along the neural network, which implicitly increases the sparsity of the parameters. The principle behind FFR is that coherent and smooth evolution of features will lead to an efficient network that avoids redundant parameters. The high structured sparsity obtained from FFR enables us to prune filters effectively. Experiments with VGGNets, ResNets on CIFAR-10/100, and Tiny ImageNet datasets demonstrate that FFR can significantly improve both unstructured and structured sparsity. Our pruning results in terms of reduction of parameters and FLOPs are comparable to or even better than those of state-of-the-art pruning methods.
Recurrent neural networks (RNNs) are a class of neural networks used in sequential tasks. However, in general, RNNs have a large number of parameters and involve enormous computational costs by repeating the recurrent structures in many time steps. As a method to overcome this difficulty, RNN pruning has attracted increasing attention in recent years, and it brings us benefits in terms of the reduction of computational cost as the time step progresses. However, most existing methods of RNN pruning are heuristic. The purpose of this paper is to study the theoretical scheme for RNN pruning method. We propose an appropriate pruning algorithm for RNNs inspired by "spectral pruning", and provide the generalization error bounds for compressed RNNs. We also provide numerical experiments to demonstrate our theoretical results and show the effectiveness of our pruning method compared with existing methods.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
The training of deep residual neural networks (ResNets) with backpropagation has a memory cost that increases linearly with respect to the depth of the network. A way to circumvent this issue is to use reversible architectures. In this paper, we propose to change the forward rule of a ResNet by adding a momentum term. The resulting networks, momentum residual neural networks (Momentum ResNets), are invertible. Unlike previous invertible architectures, they can be used as a drop-in replacement for any existing ResNet block. We show that Momentum ResNets can be interpreted in the infinitesimal step size regime as second-order ordinary differential equations (ODEs) and exactly characterize how adding momentum progressively increases the representation capabilities of Momentum ResNets. Our analysis reveals that Momentum ResNets can learn any linear mapping up to a multiplicative factor, while ResNets cannot. In a learning to optimize setting, where convergence to a fixed point is required, we show theoretically and empirically that our method succeeds while existing invertible architectures fail. We show on CIFAR and ImageNet that Momentum ResNets have the same accuracy as ResNets, while having a much smaller memory footprint, and show that pre-trained Momentum ResNets are promising for fine-tuning models.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
In this paper, we study the problem of node representation learning with graph neural networks. We present a graph neural network class named recurrent graph neural network (RGNN), that address the shortcomings of prior methods. By using recurrent units to capture the long-term dependency across layers, our methods can successfully identify important information during recursive neighborhood expansion. In our experiments, we show that our model class achieves state-of-the-art results on three benchmarks: the Pubmed, Reddit, and PPI network datasets. Our in-depth analyses also demonstrate that incorporating recurrent units is a simple yet effective method to prevent noisy information in graphs, which enables a deeper graph neural network.
Graph Neural Networks (GNNs) are based on repeated aggregations of information across nodes' neighbors in a graph. However, because common neighbors are shared between different nodes, this leads to repeated and inefficient computations. We propose Hierarchically Aggregated computation Graphs (HAGs), a new GNN graph representation that explicitly avoids redundancy by managing intermediate aggregation results hierarchically, eliminating repeated computations and unnecessary data transfers in GNN training and inference. We introduce an accurate cost function to quantitatively evaluate the runtime performance of different HAGs and use a novel HAG search algorithm to find optimized HAGs. Experiments show that the HAG representation significantly outperforms the standard GNN graph representation by increasing the end-to-end training throughput by up to 2.8x and reducing the aggregations and data transfers in GNN training by up to 6.3x and 5.6x, while maintaining the original model accuracy.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Recurrent neural networks (RNNs) provide state-of-the-art performance in processing sequential data but are memory intensive to train, limiting the flexibility of RNN models which can be trained. Reversible RNNs---RNNs for which the hidden-to-hidden transition can be reversed---offer a path to reduce the memory requirements of training, as hidden states need not be stored and instead can be recomputed during backpropagation. We first show that perfectly reversible RNNs, which require no storage of the hidden activations, are fundamentally limited because they cannot forget information from their hidden state. We then provide a scheme for storing a small number of bits in order to allow perfect reversal with forgetting. Our method achieves comparable performance to traditional models while reducing the activation memory cost by a factor of 10--15. We extend our technique to attention-based sequence-to-sequence models, where it maintains performance while reducing activation memory cost by a factor of 5--10 in the encoder, and a factor of 10--15 in the decoder.