For Arithmetization-Oriented ciphers and hash functions Gr\"obner basis attacks are generally considered as the most competitive attack vector. Unfortunately, the complexity of Gr\"obner basis algorithms is only understood for special cases, and it is needless to say that these cases do not apply to most cryptographic polynomial systems. Therefore, cryptographers have to resort to experiments, extrapolations and hypotheses to assess the security of their designs. One established measure to quantify the complexity of linear algebra-based Gr\"obner basis algorithms is the so-called solving degree. Caminata \& Gorla revealed that under a certain genericity condition on a polynomial system the solving degree is always upper bounded by the Castelnuovo-Mumford regularity and henceforth by the Macaulay bound, which only takes the degrees and number of variables of the input polynomials into account. In this paper we extend their framework to iterated polynomial systems, the standard polynomial model for symmetric ciphers and hash functions. In particular, we prove solving degree bounds for various attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash, Hades and GMiMC. Our bounds fall in line with the hypothesized complexity of Gr\"obner basis attacks on these designs, and to the best of our knowledge this is the first time that a mathematical proof for these complexities is provided. Moreover, by studying polynomials with degree falls we can prove lower bounds on the Castelnuovo-Mumford regularity for attacks on MiMC, Feistel-MiMC and Feistel-MiMC-Hash provided that only a few solutions of the corresponding iterated polynomial system originate from the base field. Hence, regularity-based solving degree estimations can never surpass a certain threshold, a desirable property for cryptographic polynomial systems.
We present a method to integrate Large Language Models (LLMs) and traditional tabular data classification techniques, addressing LLMs challenges like data serialization sensitivity and biases. We introduce two strategies utilizing LLMs for ranking categorical variables and generating priors on correlations between continuous variables and targets, enhancing performance in few-shot scenarios. We focus on Logistic Regression, introducing MonotonicLR that employs a non-linear monotonic function for mapping ordinals to cardinals while preserving LLM-determined orders. Validation against baseline models reveals the superior performance of our approach, especially in low-data scenarios, while remaining interpretable.
Multiplication is one of the most important operation in Elliptic Curve Cryptography (ECC) arithmetic. For point addition and point doubling in ECC scalar (integer) multiplication is required. In higher order classical (standard) multiplication many intermediate operations are required. Reduced operation in multiplication will increase the functional speed of ECC arithmetic. These goals can be achieved using ancient multiplication algorithm namely Nikhilam Sutra. Nikhilam Sutra is one of the Sutra (algorithm) within 16 Vedic mathematics Sutras (algorithms). Nikhilam Sutra is efficient for multiplying two large decimal numbers. The Sutra reduces multiplication of two large numbers into two smaller numbers multiplication. The functional speed of Elliptic Curve Cryptography can be increased using Nikhilam method for scalar multiplication.
Cartesian differential categories come equipped with a differential combinator which axiomatizes the fundamental properties of the total derivative from differential calculus. The objective of this paper is to understand when the Kleisli category of a monad is a Cartesian differential category. We introduce Cartesian differential monads, which are monads whose Kleisli category is a Cartesian differential category by way of lifting the differential combinator from the base category. Examples of Cartesian differential monads include tangent bundle monads and reader monads. We give a precise characterization of Cartesian differential categories which are Kleisli categories of Cartesian differential monads using abstract Kleisli categories. We also show that the Eilenberg-Moore category of a Cartesian differential monad is a tangent category.
Conventional Time Series Classification (TSC) methods are often black boxes that obscure inherent interpretation of their decision-making processes. In this work, we leverage Multiple Instance Learning (MIL) to overcome this issue, and propose a new framework called MILLET: Multiple Instance Learning for Locally Explainable Time series classification. We apply MILLET to existing deep learning TSC models and show how they become inherently interpretable without compromising (and in some cases, even improving) predictive performance. We evaluate MILLET on 85 UCR TSC datasets and also present a novel synthetic dataset that is specially designed to facilitate interpretability evaluation. On these datasets, we show MILLET produces sparse explanations quickly that are of higher quality than other well-known interpretability methods. To the best of our knowledge, our work with MILLET, which is available on GitHub (//github.com/JAEarly/MILTimeSeriesClassification), is the first to develop general MIL methods for TSC and apply them to an extensive variety of domains
In this article we present a utility function for Active SLAM (A-SLAM) which utilizes map entropy along with D-Optimality criterion metrices for weighting goal frontier candidates. We propose a utility function for frontier goal selection that exploits the occupancy grid map by utilizing the path entropy and favors unknown map locations for maximum area coverage while maintaining a low localization and mapping uncertainties. We quantify the efficiency of our method using various graph connectivity matrices and map efficiency indexes for an environment exploration task. Using simulation and experimental results against similar approaches we achieve an average of 32% more coverage using publicly available data sets.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.