The remarkable success of Large Language Models (LLMs) across diverse tasks has driven the research community to extend their capabilities to molecular applications. However, most molecular LLMs employ adapter-based architectures that do not treat molecule and text modalities equally and lack a supervision signal for the molecule modality. To address these issues, we introduce UniMoT, a Unified Molecule-Text LLM adopting a tokenizer-based architecture that expands the vocabulary of LLM with molecule tokens. Specifically, we introduce a Vector Quantization-driven tokenizer that incorporates a Q-Former to bridge the modality gap between molecule and text. This tokenizer transforms molecules into sequences of molecule tokens with causal dependency, encapsulating high-level molecular and textual information. Equipped with this tokenizer, UniMoT can unify molecule and text modalities under a shared token representation and an autoregressive training paradigm, enabling it to interpret molecules as a foreign language and generate them as text. Following a four-stage training scheme, UniMoT emerges as a multi-modal generalist capable of performing both molecule-to-text and text-to-molecule tasks. Extensive experiments demonstrate that UniMoT achieves state-of-the-art performance across a wide range of molecule comprehension and generation tasks.
Diffusion Transformers (DiTs) have gained prominence for outstanding scalability and extraordinary performance in generative tasks. However, their considerable inference costs impede practical deployment. The feature cache mechanism, which involves storing and retrieving redundant computations across timesteps, holds promise for reducing per-step inference time in diffusion models. Most existing caching methods for DiT are manually designed. Although the learning-based approach attempts to optimize strategies adaptively, it suffers from discrepancies between training and inference, which hampers both the performance and acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies primarily stem from two aspects: (1) Prior Timestep Disregard, where training ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch, where the training target (align predicted noise in each timestep) deviates from the goal of inference (generate the high-quality image). To alleviate these discrepancies, we propose HarmoniCa, a novel method that Harmonizes training and inference with a novel learning-based Caching framework built upon Step-Wise Denoising Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process, enabling the model to leverage information from prior timesteps during training, similar to the way it operates during inference. Furthermore, we design IEPO, which integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature. Therefore, IEPO helps balance final image quality and cache utilization, resolving the issue of training that only considers the impact of cache usage on the predicted output at each timestep.
Large Language Models (LLMs) have demonstrated remarkable capabilities across textual and visual domains but often generate outputs that violate physical laws, revealing a gap in their understanding of the physical world. Inspired by human cognition, where perception is fundamental to reasoning, we explore augmenting LLMs with enhanced perception abilities using Internet of Things (IoT) sensor data and pertinent knowledge for IoT task reasoning in the physical world. In this work, we systematically study LLMs capability to address real-world IoT tasks by augmenting their perception and knowledge base, and then propose a unified framework, IoT-LLM, to enhance such capability. In IoT-LLM, we customize three steps for LLMs: preprocessing IoT data into formats amenable to LLMs, activating their commonsense knowledge through chain-of-thought prompting and specialized role definitions, and expanding their understanding via IoT-oriented retrieval-augmented generation based on in-context learning. To evaluate the performance, We design a new benchmark with five real-world IoT tasks with different data types and reasoning difficulties and provide the benchmarking results on six open-source and close-source LLMs. Experimental results demonstrate the limitations of existing LLMs with naive textual inputs that cannot perform these tasks effectively. We show that IoT-LLM significantly enhances the performance of IoT tasks reasoning of LLM, such as GPT-4, achieving an average improvement of 65% across various tasks against previous methods. The results also showcase LLMs ability to comprehend IoT data and the physical law behind data by providing a reasoning process. Limitations of our work are claimed to inspire future research in this new era.
The confluence of the advancement of Autonomous Vehicles (AVs) and the maturity of Vehicle-to-Everything (V2X) communication has enabled the capability of cooperative connected and automated vehicles (CAVs). Building on top of cooperative perception, this paper explores the feasibility and effectiveness of cooperative motion prediction. Our method, CMP, takes LiDAR signals as model input to enhance tracking and prediction capabilities. Unlike previous work that focuses separately on either cooperative perception or motion prediction, our framework, to the best of our knowledge, is the first to address the unified problem where CAVs share information in both perception and prediction modules. Incorporated into our design is the unique capability to tolerate realistic V2X bandwidth limitations and transmission delays, while dealing with bulky perception representations. We also propose a prediction aggregation module, which unifies the predictions obtained by different CAVs and generates the final prediction. Through extensive experiments and ablation studies on the OPV2V and V2V4Real datasets, we demonstrate the effectiveness of our method in cooperative perception, tracking, and motion prediction. In particular, CMP reduces the average prediction error by 16.4\% with fewer missing detections compared with the no cooperation setting and by 12.3\% compared with the strongest baseline. Our work marks a significant step forward in the cooperative capabilities of CAVs, showcasing enhanced performance in complex scenarios. The code can be found on the project website: //cmp-cooperative-prediction.github.io/.
As Large Language Models (LLMs) grow increasingly powerful, ensuring their safety and alignment with human values remains a critical challenge. Ideally, LLMs should provide informative responses while avoiding the disclosure of harmful or sensitive information. However, current alignment approaches, which rely heavily on refusal strategies, such as training models to completely reject harmful prompts or applying coarse filters are limited by their binary nature. These methods either fully deny access to information or grant it without sufficient nuance, leading to overly cautious responses or failures to detect subtle harmful content. For example, LLMs may refuse to provide basic, public information about medication due to misuse concerns. Moreover, these refusal-based methods struggle to handle mixed-content scenarios and lack the ability to adapt to context-dependent sensitivities, which can result in over-censorship of benign content. To overcome these challenges, we introduce HiddenGuard, a novel framework for fine-grained, safe generation in LLMs. HiddenGuard incorporates Prism (rePresentation Router for In-Stream Moderation), which operates alongside the LLM to enable real-time, token-level detection and redaction of harmful content by leveraging intermediate hidden states. This fine-grained approach allows for more nuanced, context-aware moderation, enabling the model to generate informative responses while selectively redacting or replacing sensitive information, rather than outright refusal. We also contribute a comprehensive dataset with token-level fine-grained annotations of potentially harmful information across diverse contexts. Our experiments demonstrate that HiddenGuard achieves over 90% in F1 score for detecting and redacting harmful content while preserving the overall utility and informativeness of the model's responses.
Large Language Models (LLMs) have shown promising performance in code generation. However, how to reliably evaluate code generated by LLMs remains an unresolved problem. This paper presents CodeJudge, a code evaluation framework that leverages LLMs to evaluate the semantic correctness of generated code without the need for test cases. We investigate different ways to guide the LLM in performing "slow thinking" to arrive at an in-depth and reliable evaluation. We experimented with four LLMs as evaluators on four code generation datasets and five programming languages. The results show that CodeJudge significantly outperformed existing methods in most settings. Furthermore, compared with a SOTA GPT-3.5-based code evaluation method, CodeJudge achieved better results even when using a much smaller model, Llama-3-8B-Instruct. Our code and datasets are available on GitHub //github.com/VichyTong/CodeJudge.
We present SoundMorpher, a sound morphing method that generates perceptually uniform morphing trajectories using a diffusion model. Traditional sound morphing methods models the intractable relationship between morph factor and perception of the stimuli for resulting sounds under a linear assumption, which oversimplifies the complex nature of sound perception and limits their morph quality. In contrast, SoundMorpher explores an explicit proportional mapping between the morph factor and the perceptual stimuli of morphed sounds based on Mel-spectrogram. This approach enables smoother transitions between intermediate sounds and ensures perceptually consistent transformations, which can be easily extended to diverse sound morphing tasks. Furthermore, we present a set of quantitative metrics to comprehensively assess sound morphing systems based on three objective criteria, namely, correspondence, perceptual intermediateness, and smoothness. We provide extensive experiments to demonstrate the effectiveness and versatility of SoundMorpher in real-world scenarios, highlighting its potential impact on various applications such as creative music composition, film post-production and interactive audio technologies.
Most current Deep Learning-based Semantic Communication (DeepSC) systems are designed and trained exclusively for particular single-channel conditions, which restricts their adaptability and overall bandwidth utilization. To address this, we propose an innovative Semantic Adaptive Feature Extraction (SAFE) framework, which significantly improves bandwidth efficiency by allowing users to select different sub-semantic combinations based on their channel conditions. This paper also introduces three advanced learning algorithms to optimize the performance of SAFE framework as a whole. Through a series of simulation experiments, we demonstrate that the SAFE framework can effectively and adaptively extract and transmit semantics under different channel bandwidth conditions, of which effectiveness is verified through objective and subjective quality evaluations.
With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4\% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.
Random Forests are widely recognized for establishing efficacy in classification and regression tasks, standing out in various domains such as medical diagnosis, finance, and personalized recommendations. These domains, however, are inherently sensitive to privacy concerns, as personal and confidential data are involved. With increasing demand for the right to be forgotten, particularly under regulations such as GDPR and CCPA, the ability to perform machine unlearning has become crucial for Random Forests. However, insufficient attention was paid to this topic, and existing approaches face difficulties in being applied to real-world scenarios. Addressing this gap, we propose the DynFrs framework designed to enable efficient machine unlearning in Random Forests while preserving predictive accuracy. Dynfrs leverages subsampling method Occ(q) and a lazy tag strategy Lzy, and is still adaptable to any Random Forest variant. In essence, Occ(q) ensures that each sample in the training set occurs only in a proportion of trees so that the impact of deleting samples is limited, and Lzy delays the reconstruction of a tree node until necessary, thereby avoiding unnecessary modifications on tree structures. In experiments, applying Dynfrs on Extremely Randomized Trees yields substantial improvements, achieving orders of magnitude faster unlearning performance and better predictive accuracy than existing machine unlearning methods for Random Forests.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.