亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within the framework of Gaussian graphical models, a prior distribution for the underlying graph is introduced to induce a block structure in the adjacency matrix of the graph and learning relationships between fixed groups of variables. A novel sampling strategy named Double Reversible Jumps Markov chain Monte Carlo is developed for block structural learning, under the conjugate G-Wishart prior. The algorithm proposes moves that add or remove not just a single link but an entire group of edges. The method is then applied to smooth functional data. The classical smoothing procedure is improved by placing a graphical model on the basis expansion coefficients, providing an estimate of their conditional independence structure. Since the elements of a B-Spline basis have compact support, the independence structure is reflected on well-defined portions of the domain. A known partition of the functional domain is exploited to investigate relationships among the substances within the compound.

相關內容

We present new min-max relations in digraphs between the number of paths satisfying certain conditions and the order of the corresponding cuts. We define these objects in order to capture, in the context of solving the half-integral linkage problem, the essential properties needed for reaching a large bramble of congestion two (or any other constant) from the terminal set. This strategy has been used ad-hoc in several articles, usually with lengthy technical proofs, and our objective is to abstract it to make it applicable in a simpler and unified way. We provide two proofs of the min-max relations, one consisting in applying Menger's Theorem on appropriately defined auxiliary digraphs, and an alternative simpler one using matroids, however with worse polynomial running time. As an application, we manage to simplify and improve several results of Edwards et al. [ESA 2017] and of Giannopoulou et al. [SODA 2022] about finding half-integral linkages in digraphs. Concerning the former, besides being simpler, our proof provides an almost optimal bound on the strong connectivity of a digraph for it to be half-integrally feasible under the presence of a large bramble of congestion two (or equivalently, if the directed tree-width is large, which is the hard case). Concerning the latter, our proof uses brambles as rerouting objects instead of cylindrical grids, hence yielding much better bounds and being somehow independent of a particular topology. We hope that our min-max relations will find further applications as, in our opinion, they are simple, robust, and versatile to be easily applicable to different types of routing problems in digraphs.

We consider a a collection of categorical random variables. Of special interest is the causal effect on an outcome variable following an intervention on another variable. Conditionally on a Directed Acyclic Graph (DAG), we assume that the joint law of the random variables can be factorized according to the DAG, where each term is a categorical distribution for the node-variable given a configuration of its parents. The graph is equipped with a causal interpretation through the notion of interventional distribution and the allied "do-calculus". From a modeling perspective, the likelihood is decomposed into a product over nodes and parents of DAG-parameters, on which a suitably specified collection of Dirichlet priors is assigned. The overall joint distribution on the ensemble of DAG-parameters is then constructed using global and local independence. We account for DAG-model uncertainty and propose a reversible jump Markov Chain Monte Carlo (MCMC) algorithm which targets the joint posterior over DAGs and DAG-parameters; from the output we are able to recover a full posterior distribution of any causal effect coefficient of interest, possibly summarized by a Bayesian Model Averaging (BMA) point estimate. We validate our method through extensive simulation studies, wherein comparisons with alternative state-of-the-art procedures reveal an outperformance in terms of estimation accuracy. Finally, we analyze a dataset relative to a study on depression and anxiety in undergraduate students.

This paper examines asymmetric and time-varying dependency structures between financial returns, using a novel approach consisting of a combination of regime-switching models and the local Gaussian correlation (LGC). We propose an LGC-based bootstrap test for whether the dependence structure in financial returns across different regimes is equal. We examine this test in a Monte Carlo study, where it shows good level and power properties. We argue that this approach is more intuitive than competing approaches, typically combining regime-switching models with copula theory. Furthermore, the LGC is a semi-parametric approach, hence avoids any parametric specification of the dependence structure. We illustrate our approach using returns from the US-UK stock markets and the US stock and government bond markets. Using a two-regime model for the US-UK stock returns, the test rejects equality of the dependence structure in the two regimes. Furthermore, we find evidence of lower tail dependence in the regime associated with financial downturns in the LGC structure. For a three-regime model fitted to US stock and bond returns, the test rejects equality of the dependence structures between all regime pairs. Furthermore, we find that the LGC has a primarily positive relationship in the time period 1980-2000, mostly a negative relationship from 2000 and onwards. In addition, the regime associated with bear markets indicates less, but asymmetric dependence, clearly documenting the loss of diversification benefits in times of crisis.

Recursive max-linear vectors provide models for the causal dependence between large values of observed random variables as they are supported on directed acyclic graphs (DAGs). But the standard assumption that all nodes of such a DAG are observed is often unrealistic. We provide necessary and sufficient conditions that allow for a partially observed vector from a regularly varying model to be represented as a recursive max-linear (sub-)model. Our method relies on regular variation and the minimal representation of a recursive max-linear vector. Here the max-weighted paths of a DAG play an essential role. Results are based on a scaling technique and causal dependence relations between pairs of nodes. In certain cases our method can also detect the presence of hidden confounders. Under a two-step thresholding procedure, we show consistency and asymptotic normality of the estimators. Finally, we study our method by simulation, and apply it to nutrition intake data.

We consider the problem of recovering conditional independence relationships between $p$ jointly distributed Hilbertian random elements given $n$ realizations thereof. We operate in the sparse high-dimensional regime, where $n \ll p$ and no element is related to more than $d \ll p$ other elements. In this context, we propose an infinite-dimensional generalization of the graphical lasso. We prove model selection consistency under natural assumptions and extend many classical results to infinite dimensions. In particular, we do not require finite truncation or additional structural restrictions. The plug-in nature of our method makes it applicable to any observational regime, whether sparse or dense, and indifferent to serial dependence. Importantly, our method can be understood as naturally arising from a coherent maximum likelihood philosophy.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司