Given an $n$ by $n$ matrix $A$ and an $n$-vector $b$, along with a rational function $R(z) := D(z )^{-1} N(z)$, we show how to find the optimal approximation to $R(A) b$ from the Krylov space, $\mbox{span}( b, Ab, \ldots , A^{k-1} b)$, using the basis vectors produced by the Arnoldi algorithm. To find this optimal approximation requires running $\max \{ \mbox{deg} (D) , \mbox{deg} (N) \} - 1$ extra Arnoldi steps and solving a $k + \max \{ \mbox{deg} (D) , \mbox{deg} (N) \}$ by $k$ least squares problem. Here {\em optimal} is taken to mean optimal in the $D(A )^{*} D(A)$-norm. Similar to the case for linear systems, we show that eigenvalues alone cannot provide information about the convergence behavior of this algorithm and we discuss other possible error bounds for highly nonnormal matrices.
The $k$-dimensional Weisfeiler-Leman ($k$-WL) algorithm is a simple combinatorial algorithm that was originally designed as a graph isomorphism heuristic. It naturally finds applications in Babai's quasipolynomial time isomorphism algorithm, practical isomorphism solvers, and algebraic graph theory. However, it also has surprising connections to other areas such as logic, proof complexity, combinatorial optimization, and machine learning. The algorithm iteratively computes a coloring of the $k$-tuples of vertices of a graph. Since F\"urer's linear lower bound [ICALP 2001], it has been an open question whether there is a super-linear lower bound for the iteration number for $k$-WL on graphs. We answer this question affirmatively, establishing an $\Omega(n^{k/2})$-lower bound for all $k$.
Multiple TSP ($\mathrm{mTSP}$) is a important variant of $\mathrm{TSP}$ where a set of $k$ salesperson together visit a set of $n$ cities. The $\mathrm{mTSP}$ problem has applications to many real life applications such as vehicle routing. Rothkopf introduced another variant of $\mathrm{TSP}$ called many-visits TSP ($\mathrm{MV\mbox{-}TSP}$) where a request $r(v)\in \mathbb{Z}_+$ is given for each city $v$ and a single salesperson needs to visit each city $r(v)$ times and return back to his starting point. A combination of $\mathrm{mTSP}$ and $\mathrm{MV\mbox{-}TSP}$ called many-visits multiple TSP $(\mathrm{MV\mbox{-}mTSP})$ was studied by B\'erczi, Mnich, and Vincze where the authors give approximation algorithms for various variants of $\mathrm{MV\mbox{-}mTSP}$. In this work, we show a simple linear programming (LP) based reduction that converts a $\mathrm{mTSP}$ LP-based algorithm to a LP-based algorithm for $\mathrm{MV\mbox{-}mTSP}$ with the same approximation factor. We apply this reduction to improve or match the current best approximation factors of several variants of the $\mathrm{MV\mbox{-}mTSP}$. Our reduction shows that the addition of visit requests $r(v)$ to $\mathrm{mTSP}$ does $\textit{not}$ make the problem harder to approximate even when $r(v)$ is exponential in number of vertices. To apply our reduction, we either use existing LP-based algorithms for $\mathrm{mTSP}$ variants or show that several existing combinatorial algorithms for $\mathrm{mTSP}$ variants can be interpreted as LP-based algorithms. This allows us to apply our reduction to these combinatorial algorithms as well achieving the improved guarantees.
Given $k$ input graphs $G_1, \dots ,G_k$, where each pair $G_i$, $G_j$ with $i \neq j$ shares the same graph $G$, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on $G$. While SEFE is still open for the case of two input graphs, the problem is NP-complete for $k \geq 3$ [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to $k$ plus the vertex cover number or the feedback edge set number of the the union graph $G^\cup = G_1 \cup \dots \cup G_k$. Regarding the shared graph $G$, we show that SEFE is NP-complete, even if $G$ is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of $G$, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.
We consider both the classical and quantum variations of $X$-secure, $E$-eavesdropped and $T$-colluding symmetric private information retrieval (SPIR). This is the first work to study SPIR with $X$-security in classical or quantum variations. We first develop a scheme for classical $X$-secure, $E$-eavesdropped and $T$-colluding SPIR (XSETSPIR) based on a modified version of cross subspace alignment (CSA), which achieves a rate of $R= 1 - \frac{X+\max(T,E)}{N}$. The modified scheme achieves the same rate as the scheme used for $X$-secure PIR with the extra benefit of symmetric privacy. Next, we extend this scheme to its quantum counterpart based on the $N$-sum box abstraction. This is the first work to consider the presence of eavesdroppers in quantum private information retrieval (QPIR). In the quantum variation, the eavesdroppers have better access to information over the quantum channel compared to the classical channel due to the over-the-air decodability. To that end, we develop another scheme specialized to combat eavesdroppers over quantum channels. The scheme proposed for $X$-secure, $E$-eavesdropped and $T$-colluding quantum SPIR (XSETQSPIR) in this work maintains the super-dense coding gain from the shared entanglement between the databases, i.e., achieves a rate of $R_Q = \min\left\{ 1, 2\left(1-\frac{X+\max(T,E)}{N}\right)\right\}$.
A graph G is a k-leaf power, for an integer k >= 2, if there is a tree T with leaf set V(G) such that, for all vertices x, y in V(G), the edge xy exists in G if and only if the distance between x and y in T is at most k. Such a tree T is called a k-leaf root of G. The computational problem of constructing a k-leaf root for a given graph G and an integer k, if any, is motivated by the challenge from computational biology to reconstruct phylogenetic trees. For fixed k, Lafond [SODA 2022] recently solved this problem in polynomial time. In this paper, we propose to study optimal leaf roots of graphs G, that is, the k-leaf roots of G with minimum k value. Thus, all k'-leaf roots of G satisfy k <= k'. In terms of computational biology, seeking optimal leaf roots is more justified as they yield more probable phylogenetic trees. Lafond's result does not imply polynomial-time computability of optimal leaf roots, because, even for optimal k-leaf roots, k may (exponentially) depend on the size of G. This paper presents a linear-time construction of optimal leaf roots for chordal cographs (also known as trivially perfect graphs). Additionally, it highlights the importance of the parity of the parameter k and provides a deeper insight into the differences between optimal k-leaf roots of even versus odd k. Keywords: k-leaf power, k-leaf root, optimal k-leaf root, trivially perfect leaf power, chordal cograph
Given a matrix $M\in \mathbb{R}^{m\times n}$, the low rank matrix completion problem asks us to find a rank-$k$ approximation of $M$ as $UV^\top$ for $U\in \mathbb{R}^{m\times k}$ and $V\in \mathbb{R}^{n\times k}$ by only observing a few entries specified by a set of entries $\Omega\subseteq [m]\times [n]$. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~\cite{jns13} showed that if $M$ has incoherent rows and columns, then alternating minimization provably recovers the matrix $M$ by observing a nearly linear in $n$ number of entries. While the sample complexity has been subsequently improved~\cite{glz17}, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time $\widetilde O(|\Omega| k)$, which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require $\widetilde O(|\Omega| k^2)$ time.
I study a general revenue management problem in which $ n $ customers arrive sequentially over $ n $ periods, and you must dynamically decide which to satisfy. Satisfying the period-$ t $ customer yields utility $ u_{t} \in \mathbb{R}_{+} $ and decreases your inventory holdings by $ A_{t} \in \mathbb{R}_{+}^{M} $. The customer vectors, $ (u_{t}, A_{t}')' $, are i.i.d., with $ u_{t} $ drawn from a finite-mean continuous distribution and $ A_{t} $ drawn from a bounded discrete or continuous distribution. I study this system's regret, which is the additional utility you could get if you didn't have to make decisions on the fly. I show that if your initial inventory endowment scales linearly with $ n $ then your expected regret is $ \Theta(\log(n)) $ as $ n \rightarrow \infty $. I provide a simple policy that achieves this $ \Theta(\log(n)) $ regret rate. Finally, I extend this result to Arlotto and Gurich's (2019) multisecretary problem with uniformly distributed secretary valuations.
Let $G$ be a finite group given as input by its multiplication table. For a subset $S$ of $G$ and an element $g\in G$ the Cayley Group Membership Problem (denoted CGM) is to check if $g$ belongs to the subgroup generated by $S$. While this problem is easily seen to be in polynomial time, pinpointing its parallel complexity has been of research interest over the years. In this paper we further explore the parallel complexity of the abelian CGM problem, with focus on the dynamic setting: the generating set $S$ changes with insertions and deletions and the goal is to maintain a data structure that supports efficient membership queries to the subgroup $\angle{S}$. We obtain the following results: 1. We first consider the more general problem of Monoid Membership. When $G$ is a commutative monoid we give a deterministic dynamic algorithm constant time parallel algorithm for membership testing that supports $O(1)$ insertions and deletions in each step. 2. Building on the previous result we show that there is a dynamic randomized constant-time parallel algorithm for abelian CGM that supports polylogarithmically many insertions/deletions to $S$ in each step. 3. If the number of insertions/deletions is at most $O(\log n/\log\log n)$ then we obtain a deterministic dynamic constant-time parallel algorithm for the problem. 4. We obtain analogous results for the dynamic abelian Group Isomorphism.
A $\mu$-constrained Boolean Max-CSP$(\psi)$ instance is a Boolean Max-CSP instance on predicate $\psi:\{0,1\}^r \to \{0,1\}$ where the objective is to find a labeling of relative weight exactly $\mu$ that maximizes the fraction of satisfied constraints. In this work, we study the approximability of constrained Boolean Max-CSPs via SDP hierarchies by relating the integrality gap of Max-CSP $(\psi)$ to its $\mu$-dependent approximation curve. Formally, assuming the Small-Set Expansion Hypothesis, we show that it is NP-hard to approximate $\mu$-constrained instances of Max-CSP($\psi$) up to factor ${\sf Gap}_{\ell,\mu}(\psi)/\log(1/\mu)^2$ (ignoring factors depending on $r$) for any $\ell \geq \ell(\mu,r)$. Here, ${\sf Gap}_{\ell,\mu}(\psi)$ is the optimal integrality gap of $\ell$-round Lasserre relaxation for $\mu$-constrained Max-CSP($\psi$) instances. Our results are derived by combining the framework of Raghavendra [STOC 2008] along with more recent advances in rounding Lasserre relaxations and reductions from the Small-Set Expansion (SSE) problem. A crucial component of our reduction is a novel way of composing generic bias-dependent dictatorship tests with SSE, which could be of independent interest.
Minimum Weight Cycle (MWC) is the problem of finding a simple cycle of minimum weight in a graph $G=(V,E)$. This is a fundamental graph problem with classical sequential algorithms that run in $\tilde{O}(n^3)$ and $\tilde{O}(mn)$ time where $n=|V|$ and $m=|E|$. In recent years this problem has received significant attention in the context of hardness through fine grained sequential complexity as well as in design of faster sequential approximation algorithms. For computing minimum weight cycle in the distributed CONGEST model, near-linear in $n$ lower and upper bounds on round complexity are known for directed graphs (weighted and unweighted), and for undirected weighted graphs; these lower bounds also apply to any $(2-\epsilon)$-approximation algorithm. This paper focuses on round complexity bounds for approximating MWC in the CONGEST model: For coarse approximations we show that for any constant $\alpha >1$, computing an $\alpha$-approximation of MWC requires $\Omega (\frac{\sqrt n}{\log n})$ rounds on weighted undirected graphs and on directed graphs, even if unweighted. We complement these lower bounds with sublinear $\tilde{O}(n^{2/3}+D)$-round algorithms for approximating MWC close to a factor of 2 in these classes of graphs. A key ingredient of our approximation algorithms is an efficient algorithm for computing $(1+\epsilon)$-approximate shortest paths from $k$ sources in directed and weighted graphs, which may be of independent interest for other CONGEST problems. We present an algorithm that runs in $\tilde{O}(\sqrt{nk} + D)$ rounds if $k \ge n^{1/3}$ and $\tilde{O}(\sqrt{nk} + k^{2/5}n^{2/5+o(1)}D^{2/5} + D)$ rounds if $k<n^{1/3}$, and this round complexity smoothly interpolates between the best known upper bounds for approximate (or exact) SSSP when $k=1$ and APSP when $k=n$.