Let $G$ be a finite group given as input by its multiplication table. For a subset $S$ of $G$ and an element $g\in G$ the Cayley Group Membership Problem (denoted CGM) is to check if $g$ belongs to the subgroup generated by $S$. While this problem is easily seen to be in polynomial time, pinpointing its parallel complexity has been of research interest over the years. In this paper we further explore the parallel complexity of the abelian CGM problem, with focus on the dynamic setting: the generating set $S$ changes with insertions and deletions and the goal is to maintain a data structure that supports efficient membership queries to the subgroup $\angle{S}$. We obtain the following results: 1. We first consider the more general problem of Monoid Membership. When $G$ is a commutative monoid we give a deterministic dynamic algorithm constant time parallel algorithm for membership testing that supports $O(1)$ insertions and deletions in each step. 2. Building on the previous result we show that there is a dynamic randomized constant-time parallel algorithm for abelian CGM that supports polylogarithmically many insertions/deletions to $S$ in each step. 3. If the number of insertions/deletions is at most $O(\log n/\log\log n)$ then we obtain a deterministic dynamic constant-time parallel algorithm for the problem. 4. We obtain analogous results for the dynamic abelian Group Isomorphism.
In generative compressed sensing (GCS), we want to recover a signal $\mathbf{x}^* \in \mathbb{R}^n$ from $m$ measurements ($m\ll n$) using a generative prior $\mathbf{x}^*\in G(\mathbb{B}_2^k(r))$, where $G$ is typically an $L$-Lipschitz continuous generative model and $\mathbb{B}_2^k(r)$ represents the radius-$r$ $\ell_2$-ball in $\mathbb{R}^k$. Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $\mathbf{x}^*$ rather than for all $\mathbf{x}^*$ simultaneously. In this paper, we build a unified framework to derive uniform recovery guarantees for nonlinear GCS where the observation model is nonlinear and possibly discontinuous or unknown. Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples. Specifically, using a single realization of the sensing ensemble and generalized Lasso, {\em all} $\mathbf{x}^*\in G(\mathbb{B}_2^k(r))$ can be recovered up to an $\ell_2$-error at most $\epsilon$ using roughly $\tilde{O}({k}/{\epsilon^2})$ samples, with omitted logarithmic factors typically being dominated by $\log L$. Notably, this almost coincides with existing non-uniform guarantees up to logarithmic factors, hence the uniformity costs very little. As part of our technical contributions, we introduce the Lipschitz approximation to handle discontinuous observation models. We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy. Experimental results are presented to corroborate our theory.
Quantum multiplication is a fundamental operation in quantum computing. Most existing quantum multipliers require $O(n)$ qubits to multiply two $n$-bit integer numbers, limiting their applicability to multiply large integer numbers using near-term quantum computers. In this paper, we propose the Quantum Multiplier Based on Exponent Adder (QMbead), a new approach that addresses this limitation by requiring just $\log_2(n)$ qubits to multiply two $n$-bit integer numbers. QMbead uses a so-called exponent encoding to represent two multiplicands as two superposition states, respectively, and then employs a quantum adder to obtain the sum of these two superposition states, and subsequently measures the outputs of the quantum adder to calculate the product of the multiplicands. This paper presents two types of quantum adders based on the quantum Fourier transform (QFT) for use in QMbead. The circuit depth of QMbead is determined by the chosen quantum adder, being $O(\log^2 n)$ when using the two QFT-based adders. If leveraging a logarithmic-depth quantum adder, the time complexity of QMbead is $O(n \log n)$, identical to that of the fastest classical multiplication algorithm, Harvey-Hoeven algorithm. Interestingly, QMbead maintains an advantage over the Harvey-Hoeven algorithm, given that the latter is only suitable for excessively large numbers, whereas QMbead is valid for both small and large numbers. The multiplicand can be either an integer or a decimal number. QMbead has been successfully implemented on quantum simulators to compute products with a bit length of up to 273 bits using only 17 qubits. This establishes QMbead as an efficient solution for multiplying large integer or decimal numbers with many bits.
Let $\Gamma$ be a simple connected graph on $n$ vertices, and let $C$ be a code of length $n$ whose coordinates are indexed by the vertices of $\Gamma$. We say that $C$ is a \textit{storage code} on $\Gamma$ if for any codeword $c \in C$, one can recover the information on each coordinate of $c$ by accessing its neighbors in $\Gamma$. The main problem here is to construct high-rate storage codes on triangle-free graphs. In this paper, we solve an open problem posed by Barg and Z\'emor in 2022, showing that the BCH family of storage codes is of unit rate. Furthermore, we generalize the construction of the BCH family and obtain more storage codes of unit rate on triangle-free graphs.
We make an experimental comparison of methods for computing the numerical radius of an $n\times n$ complex matrix, based on two well-known characterizations, the first a nonconvex optimization problem in one real variable and the second a convex optimization problem in $n^{2}+1$ real variables. We make comparisons with respect to both accuracy and computation time using publicly available software.
Consider that there are $k\le n$ agents in a simple, connected, and undirected graph $G=(V,E)$ with $n$ nodes and $m$ edges. The goal of the dispersion problem is to move these $k$ agents to distinct nodes. Agents can communicate only when they are at the same node, and no other means of communication such as whiteboards are available. We assume that the agents operate synchronously. We consider two scenarios: when all agents are initially located at any single node (rooted setting) and when they are initially distributed over any one or more nodes (general setting). Kshemkalyani and Sharma presented a dispersion algorithm for the general setting, which uses $O(m_k)$ time and $\log(k+\delta)$ bits of memory per agent [OPODIS 2021]. Here, $m_k$ is the maximum number of edges in any induced subgraph of $G$ with $k$ nodes, and $\delta$ is the maximum degree of $G$. This algorithm is the fastest in the literature, as no algorithm with $o(m_k)$ time has been discovered even for the rooted setting. In this paper, we present faster algorithms for both the rooted and general settings. First, we present an algorithm for the rooted setting that solves the dispersion problem in $O(k\log \min(k,\delta))=O(k\log k)$ time using $O(\log \delta)$ bits of memory per agent. Next, we propose an algorithm for the general setting that achieves dispersion in $O(k (\log k)\cdot (\log \min(k,\delta))=O(k \log^2 k)$ time using $O(\log (k+\delta))$ bits.
We study a new graph separation problem called Multiway Near-Separator. Given an undirected graph $G$, integer $k$, and terminal set $T \subseteq V(G)$, it asks whether there is a vertex set $S \subseteq V(G) \setminus T$ of size at most $k$ such that in graph $G-S$, no pair of distinct terminals can be connected by two pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in $G-S$ by removing at most one vertex. The problem is therefore a generalization of (Node) Multiway Cut, which asks for a vertex set for which each terminal is in a different component of $G-S$. We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in time $2^{O(k \log k)} * n^{O(1)}$. Our algorithm is based on a new pushing lemma for solutions with respect to important separators, along with two problem-specific ingredients. The first is a polynomial-time subroutine to reduce the number of terminals in the instance to a polynomial in the solution size $k$ plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given a graph $G$ and terminal set $T \subseteq V(G)$ along with a single vertex $x \in V(G)$ that forms a multiway near-separator, computes a 14-approximation for the problem of finding a multiway near-separator not containing $x$.
A kernelization for a parameterized decision problem $\mathcal{Q}$ is a polynomial-time preprocessing algorithm that reduces any parameterized instance $(x,k)$ into an instance $(x',k')$ whose size is bounded by a function of $k$ alone and which has the same yes/no answer for $\mathcal{Q}$. Such preprocessing algorithms cannot exist in the context of counting problems, when the answer to be preserved is the number of solutions, since this number can be arbitrarily large compared to $k$. However, we show that for counting minimum feedback vertex sets of size at most $k$, and for counting minimum dominating sets of size at most $k$ in a planar graph, there is a polynomial-time algorithm that either outputs the answer or reduces to an instance $(G',k')$ of size polynomial in $k$ with the same number of minimum solutions. This shows that a meaningful theory of kernelization for counting problems is possible and opens the door for future developments. Our algorithms exploit that if the number of solutions exceeds $2^{\mathsf{poly}(k)}$, the size of the input is exponential in terms of $k$ so that the running time of a parameterized counting algorithm can be bounded by $\mathsf{poly}(n)$. Otherwise, we can use gadgets that slightly increase $k$ to represent choices among $2^{O(k)}$ options by only $\mathsf{poly}(k)$ vertices.
Stein's unbiased risk estimate (SURE) gives an unbiased estimate of the $\ell_2$ risk of any estimator of the mean of a Gaussian random vector. We focus here on the case when the estimator minimizes a quadratic loss term plus a convex regularizer. For these estimators SURE can be evaluated analytically for a few special cases, and generically using recently developed general purpose methods for differentiating through convex optimization problems; these generic methods however do not scale to large problems. In this paper we describe methods for evaluating SURE that handle a wide class of estimators, and also scale to large problem sizes.
We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU-layers in neural networks. The parameters of a ReLU-layer induce a natural partition of the input domain, such that in each sector of the partition, the ReLU-layer can be greatly simplified. This leads to a geometric interpretation of a ReLU-layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.
We consider distributed optimization over a $d$-dimensional space, where $K$ remote clients send coded gradient estimates over an {\em additive Gaussian Multiple Access Channel (MAC)} with noise variance $\sigma_z^2$. Furthermore, the codewords from the clients must satisfy the average power constraint $P$, resulting in a signal-to-noise ratio (SNR) of $KP/\sigma_z^2$. In this paper, we study the fundamental limits imposed by MAC on the {convergence rate of any distributed optimization algorithm and design optimal communication schemes to achieve these limits.} Our first result is a lower bound for the convergence rate, showing that communicating over a MAC imposes a slowdown of $\sqrt{d/\frac{1}{2}\log(1+\SNR)}$ on any protocol compared to the centralized setting. Next, we design a computationally tractable {digital} communication scheme that matches the lower bound to a logarithmic factor in $K$ when combined with a projected stochastic gradient descent algorithm. At the heart of our communication scheme is carefully combining several compression and modulation ideas such as quantizing along random bases, {\em Wyner-Ziv compression}, {\em modulo-lattice decoding}, and {\em amplitude shift keying.} We also show that analog schemes, which are popular due to their ease of implementation, can give close to optimal convergence rates at low $\SNR$ but experience a slowdown of roughly $\sqrt{d}$ at high $\SNR$.