亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Type inference methods based on deep learning are becoming increasingly popular as they aim to compensate for the drawbacks of static and dynamic analysis approaches, such as high uncertainty. However, their practical application is still debatable due to several intrinsic issues such as code from different software domains will involve data types that are unknown to the type inference system. In order to overcome these problems and gain high-confidence predictions, we thus present TIPICAL, a method that combines deep similarity learning with novelty detection. We show that our method can better predict data types in high confidence by successfully filtering out unknown and inaccurate predicted data types and achieving higher F1 scores to the state-of-the-art type inference method Type4Py. Additionally, we investigate how different software domains and data type frequencies may affect the results of our method.

相關內容

Activation functions are the linchpins of deep learning, profoundly influencing both the representational capacity and training dynamics of neural networks. They shape not only the nature of representations but also optimize convergence rates and enhance generalization potential. Appreciating this critical role, we present the Linear Oscillation (LoC) activation function, defined as $f(x) = x \times \sin(\alpha x + \beta)$. Distinct from conventional activation functions which primarily introduce non-linearity, LoC seamlessly blends linear trajectories with oscillatory deviations. The nomenclature "Linear Oscillation" is a nod to its unique attribute of infusing linear activations with harmonious oscillations, capturing the essence of the "Importance of Confusion". This concept of "controlled confusion" within network activations is posited to foster more robust learning, particularly in contexts that necessitate discerning subtle patterns. Our empirical studies reveal that, when integrated into diverse neural architectures, the LoC activation function consistently outperforms established counterparts like ReLU and Sigmoid. The stellar performance exhibited by the avant-garde Vision Transformer model using LoC further validates its efficacy. This study illuminates the remarkable benefits of the LoC over other prominent activation functions. It champions the notion that intermittently introducing deliberate complexity or "confusion" during training can spur more profound and nuanced learning. This accentuates the pivotal role of judiciously selected activation functions in shaping the future of neural network training.

Multi-label learning has emerged as a crucial paradigm in data analysis, addressing scenarios where instances are associated with multiple class labels simultaneously. With the growing prevalence of multi-label data across diverse applications, such as text and image classification, the significance of multi-label feature selection has become increasingly evident. This paper presents a novel information-theoretical filter-based multi-label feature selection, called ATR, with a new heuristic function. Incorporating a combinations of algorithm adaptation and problem transformation approaches, ATR ranks features considering individual labels as well as abstract label space discriminative powers. Our experimental studies encompass twelve benchmarks spanning various domains, demonstrating the superiority of our approach over ten state-of-the-art information-theoretical filter-based multi-label feature selection methods across six evaluation metrics. Furthermore, our experiments affirm the scalability of ATR for benchmarks characterized by extensive feature and label spaces. The codes are available at //github.com/Sadegh28/ATR

Achieving efficient and robust multi-channel data learning is a challenging task in data science. By exploiting low-rankness in the transformed domain, i.e., transformed low-rankness, tensor Singular Value Decomposition (t-SVD) has achieved extensive success in multi-channel data representation and has recently been extended to function representation such as Neural Networks with t-product layers (t-NNs). However, it still remains unclear how t-SVD theoretically affects the learning behavior of t-NNs. This paper is the first to answer this question by deriving the upper bounds of the generalization error of both standard and adversarially trained t-NNs. It reveals that the t-NNs compressed by exact transformed low-rank parameterization can achieve a sharper adversarial generalization bound. In practice, although t-NNs rarely have exactly transformed low-rank weights, our analysis further shows that by adversarial training with gradient flow (GF), the over-parameterized t-NNs with ReLU activations are trained with implicit regularization towards transformed low-rank parameterization under certain conditions. We also establish adversarial generalization bounds for t-NNs with approximately transformed low-rank weights. Our analysis indicates that the transformed low-rank parameterization can promisingly enhance robust generalization for t-NNs.

Reinforcement learning (RL) for bipedal locomotion has recently demonstrated robust gaits over moderate terrains using only proprioceptive sensing. However, such blind controllers will fail in environments where robots must anticipate and adapt to local terrain, which requires visual perception. In this paper, we propose a fully-learned system that allows bipedal robots to react to local terrain while maintaining commanded travel speed and direction. Our approach first trains a controller in simulation using a heightmap expressed in the robot's local frame. Next, data is collected in simulation to train a heightmap predictor, whose input is the history of depth images and robot states. We demonstrate that with appropriate domain randomization, this approach allows for successful sim-to-real transfer with no explicit pose estimation and no fine-tuning using real-world data. To the best of our knowledge, this is the first example of sim-to-real learning for vision-based bipedal locomotion over challenging terrains.

Explicit finite-sample statistical guarantees on model performance are an important ingredient in responsible machine learning. Previous work has focused mainly on bounding either the expected loss of a predictor or the probability that an individual prediction will incur a loss value in a specified range. However, for many high-stakes applications, it is crucial to understand and control the dispersion of a loss distribution, or the extent to which different members of a population experience unequal effects of algorithmic decisions. We initiate the study of distribution-free control of statistical dispersion measures with societal implications and propose a simple yet flexible framework that allows us to handle a much richer class of statistical functionals beyond previous work. Our methods are verified through experiments in toxic comment detection, medical imaging, and film recommendation.

Vectorial dual-bent functions have recently attracted some researchers' interest as they play a significant role in constructing partial difference sets, association schemes, bent partitions and linear codes. In this paper, we further study vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$, where $2\leq m \leq \frac{n}{2}$, $V_{n}^{(p)}$ denotes an $n$-dimensional vector space over the prime field $\mathbb{F}_{p}$. We give new characterizations of certain vectorial dual-bent functions (called vectorial dual-bent functions with Condition A) in terms of amorphic association schemes, linear codes and generalized Hadamard matrices, respectively. When $p=2$, we characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Furthermore, we characterize certain bent partitions in terms of amorphic association schemes, linear codes and generalized Hadamard matrices, respectively. For general vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$ with $F(0)=0, F(x)=F(-x)$ and $2\leq m \leq \frac{n}{2}$, we give a necessary and sufficient condition on constructing association schemes. Based on such a result, more association schemes are constructed from vectorial dual-bent functions.

Over the past few years, deep learning has been getting progressively more popular for the exploitation of side-channel vulnerabilities in embedded cryptographic applications, as it offers advantages in terms of the amount of attack traces required for effective key recovery. A number of effective attacks using neural networks have already been published, but reducing their cost in terms of the amount of computing resources and data required is an ever-present goal, which we pursue in this work. We focus on the ANSSI Side-Channel Attack Database (ASCAD), and produce a JAX-based framework for deep-learning-based SCA, with which we reproduce a selection of previous results and build upon them in an attempt to improve their performance. We also investigate the effectiveness of various Transformer-based models.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

北京阿比特科技有限公司