The integration of advanced localization techniques in the upcoming next generation networks (B5G/6G) is becoming increasingly important for many use cases comprising contact tracing, natural disasters, terrorist attacks, etc. Therefore, emerging lightweight and passive technologies that allow accurately controlling the propagation environment, such as reconfigurable intelligent surfaces (RISs), may help to develop advance positioning solutions relying on channel statistics and beamforming. In this paper, we devise PAPIR, a practical localization system leveraging on RISs by designing a two-stage solution building upon prior statistical information on the target user equipment (UE) position. PAPIR aims at finely estimating the UE position by performing statistical beamforming, direction-of-arrival (DoA) and time-of-arrival (ToA) estimation on a given three-dimensional search space, which is iteratively updated by exploiting the likelihood of the UE position.
The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework, which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity and hence can naturally reduce the caching network's uncertainty about future requests. We also extend the framework to learn and utilize the best request predictor in cases where many are available. We prove that the proposed {optimistic} learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the sub-linear regret bound $O(\sqrt T)$, which is the best achievable bound for policies that do not use predictions, even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.
The adoption of Unmanned Aerial Vehicles (UAVs) for public safety applications has skyrocketed in the last years. Leveraging on Physical Random Access Channel (PRACH) preambles, in this paper we pioneer a novel localization technique for UAVs equipped with cellular base stations used in emergency scenarios. We exploit the new concept of Orthogonal Time Frequency Space (OTFS) modulation (tolerant to channel Doppler spread caused by UAVs motion) to build a fully standards-compliant OTFS-modulated PRACH transmission and reception scheme able to perform time-of-arrival (ToA) measurements. First, we analyze such novel ToA ranging technique, both analytically and numerically, to accurately and iteratively derive the distance between localized users and the points traversed by the UAV along its trajectory. Then, we determine the optimal UAV speed as a trade-off between the accuracy of the ranging technique and the power needed by the UAV to reach and keep its speed during emergency operations. Finally, we demonstrate that our solution outperforms standard PRACH-based localization techniques in terms of Root Mean Square Error (RMSE) by about 20% in quasi-static conditions and up to 80% in high-mobility conditions.
Ball 3D localization in team sports has various applications including automatic offside detection in soccer, or shot release localization in basketball. Today, this task is either resolved by using expensive multi-views setups, or by restricting the analysis to ballistic trajectories. In this work, we propose to address the task on a single image from a calibrated monocular camera by estimating ball diameter in pixels and use the knowledge of real ball diameter in meters. This approach is suitable for any game situation where the ball is (even partly) visible. To achieve this, we use a small neural network trained on image patches around candidates generated by a conventional ball detector. Besides predicting ball diameter, our network outputs the confidence of having a ball in the image patch. Validations on 3 basketball datasets reveals that our model gives remarkable predictions on ball 3D localization. In addition, through its confidence output, our model improves the detection rate by filtering the candidates produced by the detector. The contributions of this work are (i) the first model to address 3D ball localization on a single image, (ii) an effective method for ball 3D annotation from single calibrated images, (iii) a high quality 3D ball evaluation dataset annotated from a single viewpoint. In addition, the code to reproduce this research is be made freely available at //github.com/gabriel-vanzandycke/deepsport.
Human action recognition (HAR) in videos is one of the core tasks of video understanding. Based on video sequences, the goal is to recognize actions performed by humans. While HAR has received much attention in the visible spectrum, action recognition in infrared videos is little studied. Accurate recognition of human actions in the infrared domain is a highly challenging task because of the redundant and indistinguishable texture features present in the sequence. Furthermore, in some cases, challenges arise from the irrelevant information induced by the presence of multiple active persons not contributing to the actual action of interest. Therefore, most existing methods consider a standard paradigm that does not take into account these challenges, which is in some part due to the ambiguous definition of the recognition task in some cases. In this paper, we propose a new method that simultaneously learns to recognize efficiently human actions in the infrared spectrum, while automatically identifying the key-actors performing the action without using any prior knowledge or explicit annotations. Our method is composed of three stages. In the first stage, optical flow-based key-actor identification is performed. Then for each key-actor, we estimate key-poses that will guide the frame selection process. A scale-invariant encoding process along with embedded pose filtering are performed in order to enhance the quality of action representations. Experimental results on InfAR dataset show that our proposed model achieves promising recognition performance and learns useful action representations.
Dynamic topological logic ($\mathbf{DTL}$) is a trimodal logic designed for reasoning about dynamic topological systems. It was shown by Fern\'andez-Duque that the natural set of axioms for $\mathbf{DTL}$ is incomplete, but he provided a complete axiomatisation in an extended language. In this paper, we consider dynamic topological logic over scattered spaces, which are topological spaces where every nonempty subspace has an isolated point. Scattered spaces appear in the context of computational logic as they provide semantics for provability and enjoy definable fixed points. We exhibit the first sound and complete dynamic topological logic in the original trimodal language. In particular, we show that the version of $\mathbf{DTL}$ based on the class of scattered spaces is finitely axiomatisable over the original language, and that the natural axiomatisation is sound and complete.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
Nanodrone swarm is formulated by multiple light-weight and low-cost nanodrones to perform the tasks in very challenging environments. Therefore, it is essential to estimate the relative position of nanodrones in the swarm for accurate and safe platooning in inclement indoor environment. However, the vision and infrared sensors are constrained by the line-of-sight perception, and instrumenting extra motion sensors on drone's body is constrained by the nanodrone's form factor and energy-efficiency. This paper presents the design, implementation and evaluation of RFDrone, a system that can sense the relative position of nanodrone in the swarm using wireless signals, which can naturally identify each individual nanodrone. To do so, each light-weight nanodrone is attached with a RF sticker (i.e., called RFID tag), which will be localized by the external RFID reader in the inclement indoor environment. Instead of accurately localizing each RFID-tagged nanodrone, we propose to estimate the relative position of all the RFID-tagged nanodrones in the swarm based on the spatial-temporal phase profiling. We implement an end-to-end physical prototype of RFDrone. Our experimental results show that RFDrone can accurately estimate the relative position of nanodrones in the swarm with average relative localization accuracy of around 0.95 across x, y and z axis, and average accuracy of around 0.93 for nanodrone swarm's geometry estimation.
Many forms of dependence manifest themselves over time, with behavior of variables in dynamical systems as a paradigmatic example. This paper studies temporal dependence in dynamical systems from a logical perspective, by extending a minimal modal base logic of static functional dependencies. We define a logic for dynamical systems with single time steps, provide a complete axiomatic proof calculus, and show the decidability of the satisfiability problem for a substantial fragment. The system comes in two guises: modal and first-order, that naturally complement each other. Next, we consider a timed semantics for our logic, as an intermediate between state spaces and temporal universes for the unfoldings of a dynamical system. We prove completeness and decidability by combining techniques from dynamic-epistemic logic and modal logic of functional dependencies with complex terms for objects. Also, we extend these results to the timed logic with functional symbols and term identity. Finally, we conclude with a brief outlook on how the system proposed here connects with richer temporal logics of system behavior, and with dynamic topological logic.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.