We consider competitive facility location as a two-stage multi-agent system with two types of clients. For a given host graph with weighted clients on the vertices, first facility agents strategically select vertices for opening their facilities. Then, the clients strategically select which of the opened facilities in their neighborhood to patronize. Facilities want to attract as much client weight as possible, clients want to minimize congestion on the chosen facility. All recently studied versions of this model assume that clients can split their weight strategically. We consider clients with unsplittable weights, but allow mixed strategies. So clients may randomize over which facility to patronize. Besides modeling a natural client behavior, this subtle change yields drastic changes, e.g., for a given facility placement, qualitatively different client equilibria are possible. As our main result, we show that pure subgame perfect equilibria always exist if all client weights are identical. For this, we use a novel potential function argument, employing a hierarchical classification of the clients and sophisticated rounding in each step. In contrast, for non-identical clients, we show that deciding the existence of even approximately stable states is computationally intractable. On the positive side, we give a tight bound of 2 on the price of anarchy which implies high social welfare of equilibria, if they exist.
Task offloading plays a pivotal role in mobile edge computing, enabling terminal devices to enhance task execution efficiency and conserve energy. However, servers are reluctant to offer services without compensation. Currently, pricing mechanisms are commonly employed to incentivize servers to serve terminal devices, with servers earning revenue through payments from these devices. Given the rapid surge in terminal devices, determining the optimal number of servers placement for service providers (SPs) to maximize revenue is crucial. In this paper, we propose a server placement scheme based on an all-pay auction framework. Experimental simulations reveal that an optimal server-user ratio of approximately 25% maximizes SP profits.
As an emerging computing paradigm, edge computing offers computing resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical in reality. However, previous works assume user privacy information to be known or consider the number of users in edge scenarios to be static. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computing resources with different configurations to clients in turn. Clients independently choose which computing resources to purchase and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without considering clients' preferences. Experimental results show that the revenue of ECSP in Egret is only 1.29\% lower than Oracle and 23.43\% better than the state-of-the-art when the client arrives dynamically.
We consider a Multi-Agent Path Finding (MAPF) setting where agents have been assigned a plan, but during its execution some agents are delayed. Instead of replanning from scratch when such a delay occurs, we propose delay introduction, whereby we delay some additional agents so that the remainder of the plan can be executed safely. We show that finding the minimum number of additional delays is APX-Hard, i.e., it is NP-Hard to find a $(1+\varepsilon)$-approximation for some $\varepsilon>0$. However, in practice we can find optimal delay-introductions using Conflict-Based Search for very large numbers of agents, and both planning time and the resulting length of the plan are comparable, and sometimes outperform the state-of-the-art heuristics for replanning.
Flocking is a behavior where multiple agents in a system attempt to stay close to each other while avoiding collision and maintaining a desired formation. This is observed in the natural world and has applications in robotics, including natural disaster search and rescue, wild animal tracking, and perimeter surveillance and patrol. Recently, large language models (LLMs) have displayed an impressive ability to solve various collaboration tasks as individual decision-makers. Solving multi-agent flocking with LLMs would demonstrate their usefulness in situations requiring spatial and decentralized decision-making. Yet, when LLM-powered agents are tasked with implementing multi-agent flocking, they fall short of the desired behavior. After extensive testing, we find that agents with LLMs as individual decision-makers typically opt to converge on the average of their initial positions or diverge from each other. After breaking the problem down, we discover that LLMs cannot understand maintaining a shape or keeping a distance in a meaningful way. Solving multi-agent flocking with LLMs would enhance their ability to understand collaborative spatial reasoning and lay a foundation for addressing more complex multi-agent tasks. This paper discusses the challenges LLMs face in multi-agent flocking and suggests areas for future improvement and research.
Clustering, or unsupervised classification, is a task often plagued by outliers. Yet there is a paucity of work on handling outliers in clustering. Outlier identification algorithms tend to fall into three broad categories: outlier inclusion, outlier trimming, and \textit{post hoc} outlier identification methods, with the former two often requiring pre-specification of the number of outliers. The fact that sample Mahalanobis distance is beta-distributed is used to derive an approximate distribution for the log-likelihoods of subset finite Gaussian mixture models. An algorithm is then proposed that removes the least plausible points according to the subset log-likelihoods, which are deemed outliers, until the subset log-likelihoods adhere to the reference distribution. This results in a trimming method, called OCLUST, that inherently estimates the number of outliers.
In multi-agent robotic exploration, managing and effectively utilizing the vast, heterogeneous data generated from dynamic environments poses a significant challenge. Federated learning (FL) is a promising approach for distributed mapping, addressing the challenges of decentralized data in collaborative learning. FL enables joint model training across multiple agents without requiring the centralization or sharing of raw data, overcoming bandwidth and storage constraints. Our approach leverages implicit neural mapping, representing maps as continuous functions learned by neural networks, for compact and adaptable representations. We further enhance this approach with meta-initialization on Earth datasets, pre-training the network to quickly learn new map structures. This combination demonstrates strong generalization to diverse domains like Martian terrain and glaciers. We rigorously evaluate this approach, demonstrating its effectiveness for real-world deployment in multi-agent exploration scenarios.
We formulate intrusion tolerance for a system with service replicas as a two-level optimal control problem. On the local level node controllers perform intrusion recovery, and on the global level a system controller manages the replication factor. The local and global control problems can be formulated as classical problems in operations research, namely, the machine replacement problem and the inventory replenishment problem. Based on this formulation, we design TOLERANCE, a novel control architecture for intrusion-tolerant systems. We prove that the optimal control strategies on both levels have threshold structure and design efficient algorithms for computing them. We implement and evaluate TOLERANCE in an emulation environment where we run 10 types of network intrusions. The results show that TOLERANCE can improve service availability and reduce operational cost compared with state-of-the-art intrusion-tolerant systems.
Planning is a crucial task for agents in task oriented dialogs (TODs). Human agents typically resolve user issues by following predefined workflows, decomposing workflow steps into actionable items, and performing actions by executing APIs in order; all of which require reasoning and planning. With the recent advances in LLMs, there have been increasing attempts to use them for task planning and API usage. However, the faithfulness of the plans to predefined workflows and API dependencies, is not guaranteed with LLMs. Moreover, workflows in real life are often custom-defined and prone to changes; hence, adaptation is desirable. To study this, we propose the problem of faithful planning in TODs that needs to resolve user intents by following predefined flows and preserving API dependencies. To solve this problem, we propose FLAP, a Flow-Adhering Planning algorithm based on constrained decoding with lookahead heuristic for LLMs. Our algorithm alleviates the need for finetuning LLMs using domain specific (plan/dependency) data, enables quick adaptation to predefined flows, and outperforms other decoding and prompting-based baselines. Further, our algorithm empowers smaller LLMs (7B) to perform at par larger LLMs (30B-40B).
Vision-language models have recently shown great potential on many tasks in computer vision. Meanwhile, prior work demonstrates prompt tuning designed for vision-language models could acquire superior performance on few-shot image recognition compared to linear probe, a strong baseline. In practice, many few-shot tasks are inherently correlated, particularly within specialized domains. However, such information is overlooked previously. Inspired by the fact that modeling task relationship by multi-task learning can usually boost performance, we propose a novel method SoftCPT (Soft Context Sharing for Prompt Tuning) to tune pre-trained vision-language models on multiple target few-shot tasks jointly. Specifically, we design a task-shared meta network to generate prompt context for each task using task name together with a learnable task context as input. The parameters of this meta network as well as the task context are tuned on the joint training set of all tasks. As such, the prompt context of all tasks will be shared in a soft manner. Extensive experiments across four multi-task few-shot datasets covering 44 tasks and 1593 categories demonstrate that SoftCPT significantly outperforms single-task prompt tuning methods, highlighting the effectiveness of multi-task learning for vision-language prompt tuning. Code is available at //github.com/kding1225/softcpt.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.