亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Devising deep latent variable models for multi-modal data has been a long-standing theme in machine learning research. Multi-modal Variational Autoencoders (VAEs) have been a popular generative model class that learns latent representations that jointly explain multiple modalities. Various objective functions for such models have been suggested, often motivated as lower bounds on the multi-modal data log-likelihood or from information-theoretic considerations. To encode latent variables from different modality subsets, Product-of-Experts (PoE) or Mixture-of-Experts (MoE) aggregation schemes have been routinely used and shown to yield different trade-offs, for instance, regarding their generative quality or consistency across multiple modalities. In this work, we consider a variational bound that can tightly approximate the data log-likelihood. We develop more flexible aggregation schemes that generalize PoE or MoE approaches by combining encoded features from different modalities based on permutation-invariant neural networks. Our numerical experiments illustrate trade-offs for multi-modal variational bounds and various aggregation schemes. We show that tighter variational bounds and more flexible aggregation models can become beneficial when one wants to approximate the true joint distribution over observed modalities and latent variables in identifiable models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 可辨認的 · 潛在 · 有向 ·
2024 年 5 月 31 日

Linear non-Gaussian causal models postulate that each random variable is a linear function of parent variables and non-Gaussian exogenous error terms. We study identification of the linear coefficients when such models contain latent variables. Our focus is on the commonly studied acyclic setting, where each model corresponds to a directed acyclic graph (DAG). For this case, prior literature has demonstrated that connections to overcomplete independent component analysis yield effective criteria to decide parameter identifiability in latent variable models. However, this connection is based on the assumption that the observed variables linearly depend on the latent variables. Departing from this assumption, we treat models that allow for arbitrary non-linear latent confounding. Our main result is a graphical criterion that is necessary and sufficient for deciding the generic identifiability of direct causal effects. Moreover, we provide an algorithmic implementation of the criterion with a run time that is polynomial in the number of observed variables. Finally, we report on estimation heuristics based on the identification result, explore a generalization to models with feedback loops, and provide new results on the identifiability of the causal graph.

Case-control sampling is a commonly used retrospective sampling design to alleviate imbalanced structure of binary data. When fitting the logistic regression model with case-control data, although the slope parameter of the model can be consistently estimated, the intercept parameter is not identifiable, and the marginal case proportion is not estimatable, either. We consider the situations in which besides the case-control data from the main study, called internal study, there also exists summary-level information from related external studies. An empirical likelihood based approach is proposed to make inference for the logistic model by incorporating the internal case-control data and external information. We show that the intercept parameter is identifiable with the help of external information, and then all the regression parameters as well as the marginal case proportion can be estimated consistently. The proposed method also accounts for the possible variability in external studies. The resultant estimators are shown to be asymptotically normally distributed. The asymptotic variance-covariance matrix can be consistently estimated by the case-control data. The optimal way to utilized external information is discussed. Simulation studies are conducted to verify the theoretical findings. A real data set is analyzed for illustration.

Robotic exploration has long captivated researchers aiming to map complex environments efficiently. Techniques such as potential fields and frontier exploration have traditionally been employed in this pursuit, primarily focusing on solitary agents. Recent advancements have shifted towards optimizing exploration efficiency through multiagent systems. However, many existing approaches overlook critical real-world factors, such as broadcast range limitations, communication costs, and coverage overlap. This paper addresses these gaps by proposing a distributed maze exploration strategy (CU-LVP) that assumes constrained broadcast ranges and utilizes Voronoi diagrams for better area partitioning. By adapting traditional multiagent methods to distributed environments with limited broadcast ranges, this study evaluates their performance across diverse maze topologies, demonstrating the efficacy and practical applicability of the proposed method. The code and experimental results supporting this study are available in the following repository: //github.com/manouslinard/multiagent-exploration/.

Given a finite set of matrices with integer entries, the matrix mortality problem asks if there exists a product of these matrices equal to the zero matrix. We consider a special case of this problem where all entries of the matrices are nonnegative. This case is equivalent to the NFA mortality problem, which, given an NFA, asks for a word $w$ such that the image of every state under $w$ is the empty set. The size of the alphabet of the NFA is then equal to the number of matrices in the set. We study the length of shortest such words depending on the size of the alphabet. We show that this length for an NFA with $n$ states can be at least $2^n - 1$, $2^{(n - 4)/2}$ and $2^{(n - 2)/3}$ if the size of the alphabet is, respectively, equal to $n$, three and two.

We present a new method for constructing valid covariance functions of Gaussian processes for spatial analysis in irregular, non-convex domains such as bodies of water. Standard covariance functions based on geodesic distances are not guaranteed to be positive definite on such domains, while existing non-Euclidean approaches fail to respect the partially Euclidean nature of these domains where the geodesic distance agrees with the Euclidean distances for some pairs of points. Using a visibility graph on the domain, we propose a class of covariance functions that preserve Euclidean-based covariances between points that are connected in the domain while incorporating the non-convex geometry of the domain via conditional independence relationships. We show that the proposed method preserves the partially Euclidean nature of the intrinsic geometry on the domain while maintaining validity (positive definiteness) and marginal stationarity of the covariance function over the entire parameter space, properties which are not always fulfilled by existing approaches to construct covariance functions on non-convex domains. We provide useful approximations to improve computational efficiency, resulting in a scalable algorithm. We compare the performance of our method with those of competing state-of-the-art methods using simulation studies on synthetic non-convex domains. The method is applied to data regarding acidity levels in the Chesapeake Bay, showing its potential for ecological monitoring in real-world spatial applications on irregular domains.

This study explores reduced-order modeling for analyzing the time-dependent diffusion-deformation of hydrogels. The full-order model describing hydrogel transient behavior consists of a coupled system of partial differential equations in which chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the finite element method. We employ proper orthogonal decomposition as a model order reduction approach. The reduced-order model performance is tested through a benchmark problem on hydrogel swelling and a case study simulating co-axial printing. Then, we embed the reduced-order model into an optimization loop to efficiently identify the coupled problem's material parameters using full-field data. Finally, a study is conducted on the uncertainty propagation of the material parameter.

Sequential algorithms such as sequential importance sampling (SIS) and sequential Monte Carlo (SMC) have proven fundamental in Bayesian inference for models not admitting a readily available likelihood function. For approximate Bayesian computation (ABC), SMC-ABC is the state-of-art sampler. However, since the ABC paradigm is intrinsically wasteful, sequential ABC schemes can benefit from well-targeted proposal samplers that efficiently avoid improbable parameter regions. We contribute to the ABC modeller's toolbox with novel proposal samplers that are conditional to summary statistics of the data. In a sense, the proposed parameters are "guided" to rapidly reach regions of the posterior surface that are compatible with the observed data. This speeds up the convergence of these sequential samplers, thus reducing the computational effort, while preserving the accuracy in the inference. We provide a variety of guided Gaussian and copula-based samplers for both SIS-ABC and SMC-ABC easing inference for challenging case-studies, including multimodal posteriors, highly correlated posteriors, hierarchical models with about 20 parameters, and a simulation study of cell movements using more than 400 summary statistics.

Distributionally robust optimization has emerged as an attractive way to train robust machine learning models, capturing data uncertainty and distribution shifts. Recent statistical analyses have proved that robust models built from Wasserstein ambiguity sets have nice generalization guarantees, breaking the curse of dimensionality. However, these results are obtained in specific cases, at the cost of approximations, or under assumptions difficult to verify in practice. In contrast, we establish, in this article, exact generalization guarantees that cover all practical cases, including any transport cost function and any loss function, potentially non-convex and nonsmooth. For instance, our result applies to deep learning, without requiring restrictive assumptions. We achieve this result through a novel proof technique that combines nonsmooth analysis rationale with classical concentration results. Our approach is general enough to extend to the recent versions of Wasserstein/Sinkhorn distributionally robust problems that involve (double) regularizations.

In many statistical modeling problems, such as classification and regression, it is common to encounter sparse and blocky coefficients. Sparse fused Lasso is specifically designed to recover these sparse and blocky structured features, especially in cases where the design matrix has ultrahigh dimensions, meaning that the number of features significantly surpasses the number of samples. Quantile loss is a well-known robust loss function that is widely used in statistical modeling. In this paper, we propose a new sparse fused lasso classification model, and develop a unified multi-block linearized alternating direction method of multipliers algorithm that effectively selects sparse and blocky features for regression and classification. Our algorithm has been proven to converge with a derived linear convergence rate. Additionally, our algorithm has a significant advantage over existing methods for solving ultrahigh dimensional sparse fused Lasso regression and classification models due to its lower time complexity. Note that the algorithm can be easily extended to solve various existing fused Lasso models. Finally, we present numerical results for several synthetic and real-world examples, which demonstrate the robustness, scalability, and accuracy of the proposed classification model and algorithm

Characterized by an outer integral connected to an inner integral through a nonlinear function, nested integration is a challenging problem in various fields, such as engineering and mathematical finance. The available numerical methods for nested integration based on Monte Carlo (MC) methods can be prohibitively expensive owing to the error propagating from the inner to the outer integral. Attempts to enhance the efficiency of these approximations using the quasi-MC (QMC) or randomized QMC (rQMC) method have focused on either the inner or outer integral approximation. This work introduces a novel nested rQMC method that simultaneously addresses the approximation of the inner and outer integrals. This method leverages the unique nested integral structure to offer a more efficient approximation mechanism. By incorporating Owen's scrambling techniques, we address integrands exhibiting infinite variation in the Hardy--Krause sense, enabling theoretically sound error estimates. As the primary contribution, we derive asymptotic error bounds for the bias and variance of our estimator, along with the regularity conditions under which these bounds can be attained. In addition, we provide nearly optimal sample sizes for the rQMC approximations underlying the numerical implementation of the proposed method. Moreover, we derive a truncation scheme to make our estimator applicable in the context of expected information gain estimation and indicate how to use importance sampling to remedy the measure concentration arising in the inner integral. We verify the estimator quality through numerical experiments by comparing the computational efficiency of the nested rQMC method against standard nested MC integration for two case studies: one in thermomechanics and the other in pharmacokinetics. These examples highlight the computational savings and enhanced applicability of the proposed approach.

北京阿比特科技有限公司