亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In highly interactive driving scenarios, the actions of one agent greatly influences those of its neighbors. Planning safe motions for autonomous vehicles in such interactive environments, therefore, requires reasoning about the impact of the ego's intended motion plan on nearby agents' behavior. Deep-learning-based models have recently achieved great success in trajectory prediction and many models in the literature allow for ego-conditioned prediction. However, leveraging ego-conditioned prediction remains challenging in downstream planning due to the complex nature of neural networks, limiting the planner structure to simple ones, e.g., sampling-based planner. Despite their ability to generate fine-grained high-quality motion plans, it is difficult for gradient-based planning algorithms, such as model predictive control (MPC), to leverage ego-conditioned prediction due to their iterative nature and need for gradient. We present Interactive Joint Planning (IJP) that bridges MPC with learned prediction models in a computationally scalable manner to provide us the best of both the worlds. In particular, IJP jointly optimizes over the behavior of the ego and the surrounding agents and leverages deep-learned prediction models as prediction priors that the join trajectory optimization tries to stay close to. Furthermore, by leveraging homotopy classes, our joint optimizer searches over diverse motion plans to avoid getting stuck at local minima. Closed-loop simulation result shows that IJP significantly outperforms the baselines that are either without joint optimization or running sampling-based planning.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 估計/估計量 · Machine Learning · Learning · 可辨認的 ·
2024 年 1 月 16 日

It is valuable for any decision maker to know the impact of decisions (treatments) on average and for subgroups. The causal machine learning literature has recently provided tools for estimating group average treatment effects (GATE) to understand treatment heterogeneity better. This paper addresses the challenge of interpreting such differences in treatment effects between groups while accounting for variations in other covariates. We propose a new parameter, the balanced group average treatment effect (BGATE), which measures a GATE with a specific distribution of a priori-determined covariates. By taking the difference of two BGATEs, we can analyse heterogeneity more meaningfully than by comparing two GATEs. The estimation strategy for this parameter is based on double/debiased machine learning for discrete treatments in an unconfoundedness setting, and the estimator is shown to be $\sqrt{N}$-consistent and asymptotically normal under standard conditions. Adding additional identifying assumptions allows specific balanced differences in treatment effects between groups to be interpreted causally, leading to the causal balanced group average treatment effect. We explore the finite sample properties in a small-scale simulation study and demonstrate the usefulness of these parameters in an empirical example.

Comprehensive scene understanding is a critical enabler of robot autonomy. Semantic segmentation is one of the key scene understanding tasks which is pivotal for several robotics applications including autonomous driving, domestic service robotics, last mile delivery, amongst many others. Semantic segmentation is a dense prediction task that aims to provide a scene representation in which each pixel of an image is assigned a semantic class label. Therefore, semantic segmentation considers the full scene context, incorporating the object category, location, and shape of all the scene elements, including the background. Numerous algorithms have been proposed for semantic segmentation over the years. However, the recent advances in deep learning combined with the boost in the computational capacity and the availability of large-scale labeled datasets have led to significant advances in semantic segmentation. In this chapter, we introduce the task of semantic segmentation and present the deep learning techniques that have been proposed to address this task over the years. We first define the task of semantic segmentation and contrast it with other closely related scene understanding problems. We detail different algorithms and architectures for semantic segmentation and the commonly employed loss functions. Furthermore, we present an overview of datasets, benchmarks, and metrics that are used in semantic segmentation. We conclude the chapter with a discussion of challenges and opportunities for further research in this area.

Automatic sleep staging is essential for sleep assessment and disorder diagnosis. Most existing methods depend on one specific dataset and are limited to be generalized to other unseen datasets, for which the training data and testing data are from the same dataset. In this paper, we introduce domain generalization into automatic sleep staging and propose the task of generalizable sleep staging which aims to improve the model generalization ability to unseen datasets. Inspired by existing domain generalization methods, we adopt the feature alignment idea and propose a framework called SleepDG to solve it. Considering both of local salient features and sequential features are important for sleep staging, we propose a Multi-level Feature Alignment combining epoch-level and sequence-level feature alignment to learn domain-invariant feature representations. Specifically, we design an Epoch-level Feature Alignment to align the feature distribution of each single sleep epoch among different domains, and a Sequence-level Feature Alignment to minimize the discrepancy of sequential features among different domains. SleepDG is validated on five public datasets, achieving the state-of-the-art performance.

We study universal deepfake detection. Our goal is to detect synthetic images from a range of generative AI approaches, particularly from emerging ones which are unseen during training of the deepfake detector. Universal deepfake detection requires outstanding generalization capability. Motivated by recently proposed masked image modeling which has demonstrated excellent generalization in self-supervised pre-training, we make the first attempt to explore masked image modeling for universal deepfake detection. We study spatial and frequency domain masking in training deepfake detectors. Based on empirical analysis, we propose a novel deepfake detector via frequency masking. Our focus on frequency domain is different from the majority, which primarily target spatial domain detection. Our comparative analyses reveal substantial performance gains over existing methods. Code and models are publicly available.

Artificial light plays an integral role in modern cities, significantly enhancing human productivity and the efficiency of civilization. However, excessive illumination can lead to light pollution, posing non-negligible threats to economic burdens, ecosystems, and human health. Despite its critical importance, the exploration of its causes remains relatively limited within the field of artificial intelligence, leaving an incomplete understanding of the factors contributing to light pollution and sustainable illumination planning distant. To address this gap, we introduce a novel framework named Causally Aware Generative Adversarial Networks (CAGAN). This innovative approach aims to uncover the fundamental drivers of light pollution within cities and offer intelligent solutions for optimal illumination resource allocation in the context of sustainable urban development. We commence by examining light pollution across 33,593 residential areas in seven global metropolises. Our findings reveal substantial influences on light pollution levels from various building types, notably grasslands, commercial centers and residential buildings as significant contributors. These discovered causal relationships are seamlessly integrated into the generative modeling framework, guiding the process of generating light pollution maps for diverse residential areas. Extensive experiments showcase CAGAN's potential to inform and guide the implementation of effective strategies to mitigate light pollution. Our code and data are publicly available at //github.com/zhangyuuao/Light_Pollution_CAGAN.

Aspect sentiment quad prediction (ASQP) aims to predict the quad sentiment elements for a given sentence, which is a critical task in the field of aspect-based sentiment analysis. However, the data imbalance issue has not received sufficient attention in ASQP task. In this paper, we divide the issue into two-folds, quad-pattern imbalance and aspect-category imbalance, and propose an Adaptive Data Augmentation (ADA) framework to tackle the imbalance issue. Specifically, a data augmentation process with a condition function adaptively enhances the tail quad patterns and aspect categories, alleviating the data imbalance in ASQP. Following previous studies, we also further explore the generative framework for extracting complete quads by introducing the category prior knowledge and syntax-guided decoding target. Experimental results demonstrate that data augmentation for imbalance in ASQP task can improve the performance, and the proposed ADA method is superior to naive data oversampling.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司