亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predicting temporally consistent road users' trajectories in a multi-agent setting is a challenging task due to unknown characteristics of agents and their varying intentions. Besides using semantic map information and modeling interactions, it is important to build an effective mechanism capable of reasoning about behaviors at different levels of granularity. To this end, we propose Dynamic goal quErieS with temporal Transductive alIgNmEnt (DESTINE) method. Unlike past arts, our approach 1) dynamically predicts agents' goals irrespective of particular road structures, such as lanes, allowing the method to produce a more accurate estimation of destinations; 2) achieves map compliant predictions by generating future trajectories in a coarse-to-fine fashion, where the coarser predictions at a lower frame rate serve as intermediate goals; and 3) uses an attention module designed to temporally align predicted trajectories via masked attention. Using the common Argoverse benchmark dataset, we show that our method achieves state-of-the-art performance on various metrics, and further investigate the contributions of proposed modules via comprehensive ablation studies.

相關內容

Cellular vehicular-to-everything (C-V2X) systems offer the potential for improving road safety, in part through the exchange of periodic basic safety messages (BSMs) between nearby vehicles. The reliability and latency of these messages is a key metric. Hybrid automatic repeat request (HARQ) retransmissions are one technique used to this end. However, HARQ may come at the expense of consuming the limited available wireless resources, especially in highly congested scenarios. This paper studies BSM transmission latency and reliability when HARQ retransmissions are used with the semi-persistent scheduling (SPS) in C-V2X transmission mode 4. We do so through extensive system-level simulations that closely follow the SPS process. Furthermore, we provide an analytical model for the tail behavior of the BSM latency distribution with HARQ retransmissions that is a good approximation to the simulation results. Our study reveals the impact of several deployment settings (e.g., bandwidth configurations and vehicle density).

Lane detection is a vital task for vehicles to navigate and localize their position on the road. To ensure reliable results, lane detection algorithms must have robust generalization performance in various road environments. However, despite the significant performance improvement of deep learning-based lane detection algorithms, their generalization performance in response to changes in road environments still falls short of expectations. In this paper, we present a novel framework for single-source domain generalization (SSDG) in lane detection. By decomposing data into lane structures and surroundings, we enhance diversity using High-Definition (HD) maps and generative models. Rather than expanding data volume, we strategically select a core subset of data, maximizing diversity and optimizing performance. Our extensive experiments demonstrate that our framework enhances the generalization performance of lane detection, comparable to the domain adaptation-based method.

Neural networks' expressiveness comes at the cost of complex, black-box models that often extrapolate poorly beyond the domain of the training dataset, conflicting with the goal of finding compact analytic expressions to describe scientific data. We introduce OccamNet, a neural network model that finds interpretable, compact, and sparse symbolic fits to data, \`a la Occam's razor. Our model defines a probability distribution over functions with efficient sampling and function evaluation. We train by sampling functions and biasing the probability mass toward better fitting solutions, backpropagating using cross-entropy matching in a reinforcement-learning loss. OccamNet can identify symbolic fits for a variety of problems, including analytic and non-analytic functions, implicit functions, and simple image classification, and can outperform state-of-the-art symbolic regression methods on real-world regression datasets. Our method requires a minimal memory footprint, fits complicated functions in minutes on a single CPU, and scales on a GPU.

Instruction tuning has become the de facto method to equip large language models (LLMs) with the ability of following user instructions. Usually, hundreds of thousands or millions of instruction-following pairs are employed to fine-tune the foundation LLMs. Recently, some studies show that a small number of high-quality instruction data is enough. However, how to select appropriate instruction data for a given LLM is still an open problem. To address this problem, in this paper we present a model-oriented data selection (MoDS) approach, which selects instruction data based on a new criteria considering three aspects: quality, coverage and necessity. First, our approach utilizes a quality evaluation model to filter out the high-quality subset from the original instruction dataset, and then designs an algorithm to further select from the high-quality subset a seed instruction dataset with good coverage. The seed dataset is applied to fine-tune the foundation LLM to obtain an initial instruction-following LLM. Finally, we develop a necessity evaluation model to find out the instruction data which are performed badly in the initial instruction-following LLM and consider them necessary instructions to further improve the LLMs. In this way, we can get a small high-quality, broad-coverage and high-necessity subset from the original instruction datasets. Experimental results show that, the model fine-tuned with 4,000 instruction pairs selected by our approach could perform better than the model fine-tuned with the full original dataset which includes 214k instruction data.

A donation-tracking system using smart contracts and blockchain technology has the potential to revolutionize the way charitable giving is tracked and managed. This article explores how smart contracts and blockchain can be used to create a transparent and secure ledger for tracking charitable donations. We discuss the limitations of traditional donation systems and how a blockchain-based system can help overcome these challenges. We describe how smart contracts work, how they can be used in donation tracking, and the benefits they offer, including automated processes, reduced transaction fees, and increased accountability. We also discuss how blockchain technology provides a decentralized and tamper-proof ledger that can increase transparency and help prevent fraud. Finally, we examine some of the challenges that must be addressed when implementing a smart contract-based donation tracking system, such as the need for technical expertise and the potential for security breaches. Overall, a donation-tracking system using smart contracts and blockchain has the potential to increase trust and accountability in the donation process, which can ultimately help ensure that donations are used for their intended purposes.

Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at //github.com/Spico197/Mirror .

Despite breakthroughs in audio generation models, their capabilities are often confined to domain-specific conditions such as speech transcriptions and audio captions. However, real-world audio creation aims to generate harmonious audio containing various elements such as speech, music, and sound effects with controllable conditions, which is challenging to address using existing audio generation systems. We present WavJourney, a novel framework that leverages Large Language Models (LLMs) to connect various audio models for audio creation. WavJourney allows users to create storytelling audio content with diverse audio elements simply from textual descriptions. Specifically, given a text instruction, WavJourney first prompts LLMs to generate an audio script that serves as a structured semantic representation of audio elements. The audio script is then converted into a computer program, where each line of the program calls a task-specific audio generation model or computational operation function. The computer program is then executed to obtain a compositional and interpretable solution for audio creation. Experimental results suggest that WavJourney is capable of synthesizing realistic audio aligned with textually-described semantic, spatial and temporal conditions, achieving state-of-the-art results on text-to-audio generation benchmarks. Additionally, we introduce a new multi-genre story benchmark. Subjective evaluations demonstrate the potential of WavJourney in crafting engaging storytelling audio content from text. We further demonstrate that WavJourney can facilitate human-machine co-creation in multi-round dialogues. To foster future research, the code and synthesized audio are available at: //audio-agi.github.io/WavJourney_demopage/.

Learning unsupervised world models for autonomous driving has the potential to improve the reasoning capabilities of today's systems dramatically. However, most work neglects the physical attributes of the world and focuses on sensor data alone. We propose MUVO, a MUltimodal World Model with Geometric VOxel Representations to address this challenge. We utilize raw camera and lidar data to learn a sensor-agnostic geometric representation of the world, which can directly be used by downstream tasks, such as planning. We demonstrate multimodal future predictions and show that our geometric representation improves the prediction quality of both camera images and lidar point clouds.

Federated Learning (FL) has garnered significant attention for its potential to protect user privacy while enhancing model training efficiency. However, recent research has demonstrated that FL protocols can be easily compromised by active reconstruction attacks executed by dishonest servers. These attacks involve the malicious modification of global model parameters, allowing the server to obtain a verbatim copy of users' private data by inverting their gradient updates. Tackling this class of attack remains a crucial challenge due to the strong threat model. In this paper, we propose OASIS, a defense mechanism based on image augmentation that effectively counteracts active reconstruction attacks while preserving model performance. We first uncover the core principle of gradient inversion that enables these attacks and theoretically identify the main conditions by which the defense can be robust regardless of the attack strategies. We then construct OASIS with image augmentation showing that it can undermine the attack principle. Comprehensive evaluations demonstrate the efficacy of OASIS highlighting its feasibility as a solution.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司