亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Model diagnostics and forecast evaluation are two sides of the same coin. A common principle is that fitted or predicted distributions ought to be calibrated or reliable, ideally in the sense of auto-calibration, where the outcome is a random draw from the posited distribution. For binary responses, this is the universal concept of reliability. For real-valued outcomes, a general theory of calibration has been elusive, despite a recent surge of interest in distributional regression and machine learning. We develop a framework rooted in probability theory, which gives rise to hierarchies of calibration, and applies to both predictive distributions and stand-alone point forecasts. In a nutshell, a prediction - distributional or single-valued - is conditionally T-calibrated if it can be taken at face value in terms of the functional T. Whenever T is defined via an identification function - as in the cases of threshold (non) exceedance probabilities, quantiles, expectiles, and moments - auto-calibration implies T-calibration. We introduce population versions of T-reliability diagrams and revisit a score decomposition into measures of miscalibration (MCB), discrimination (DSC), and uncertainty (UNC). In empirical settings, stable and efficient estimators of T-reliability diagrams and score components arise via nonparametric isotonic regression and the pool-adjacent-violators algorithm. For in-sample model diagnostics, we propose a universal coefficient of determination, $$\text{R}^\ast = \frac{\text{DSC}-\text{MCB}}{\text{UNC}},$$ that nests and reinterprets the classical $\text{R}^2$ in least squares (mean) regression and its natural analogue $\text{R}^1$ in quantile regression, yet applies to T-regression in general, with MCB $\geq 0$, DSC $\geq 0$, and $\text{R}^\ast \in [0,1]$ under modest conditions.

相關內容

Pervasive cross-section dependence is increasingly recognized as a characteristic of economic data and the approximate factor model provides a useful framework for analysis. Assuming a strong factor structure where $\Lop\Lo/N^\alpha$ is positive definite in the limit when $\alpha=1$, early work established convergence of the principal component estimates of the factors and loadings up to a rotation matrix. This paper shows that the estimates are still consistent and asymptotically normal when $\alpha\in(0,1]$ albeit at slower rates and under additional assumptions on the sample size. The results hold whether $\alpha$ is constant or varies across factors. The framework developed for heterogeneous loadings and the simplified proofs that can be also used in strong analysis are of independent interest

We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.

In this paper we propose the adaptive lasso for predictive quantile regression (ALQR). Reflecting empirical findings, we allow predictors to have various degrees of persistence and exhibit different signal strengths. The number of predictors is allowed to grow with the sample size. We study regularity conditions under which stationary, local unit root, and cointegrated predictors are present simultaneously. We next show the convergence rates, model selection consistency, and asymptotic distributions of ALQR. We apply the proposed method to the out-of-sample quantile prediction problem of stock returns and find that it outperforms the existing alternatives. We also provide numerical evidence from additional Monte Carlo experiments, supporting the theoretical results.

We consider the problem of reconstructing the signal and the hidden variables from observations coming from a multi-layer network with rotationally invariant weight matrices. The multi-layer structure models inference from deep generative priors, and the rotational invariance imposed on the weights generalizes the i.i.d.\ Gaussian assumption by allowing for a complex correlation structure, which is typical in applications. In this work, we present a new class of approximate message passing (AMP) algorithms and give a state evolution recursion which precisely characterizes their performance in the large system limit. In contrast with the existing multi-layer VAMP (ML-VAMP) approach, our proposed AMP -- dubbed multi-layer rotationally invariant generalized AMP (ML-RI-GAMP) -- provides a natural generalization beyond Gaussian designs, in the sense that it recovers the existing Gaussian AMP as a special case. Furthermore, ML-RI-GAMP exhibits a significantly lower complexity than ML-VAMP, as the computationally intensive singular value decomposition is replaced by an estimation of the moments of the design matrices. Finally, our numerical results show that this complexity gain comes at little to no cost in the performance of the algorithm.

We study efficient estimation of an interventional mean associated with a point exposure treatment under a causal graphical model represented by a directed acyclic graph without hidden variables. Under such a model, it may happen that a subset of the variables are uninformative in that failure to measure them neither precludes identification of the interventional mean nor changes the semiparametric variance bound for regular estimators of it. We develop a set of graphical criteria that are sound and complete for eliminating all the uninformative variables so that the cost of measuring them can be saved without sacrificing estimation efficiency, which could be useful when designing a planned observational or randomized study. Further, we construct a reduced directed acyclic graph on the set of informative variables only. We show that the interventional mean is identified from the marginal law by the g-formula (Robins, 1986) associated with the reduced graph, and the semiparametric variance bounds for estimating the interventional mean under the original and the reduced graphical model agree. This g-formula is an irreducible, efficient identifying formula in the sense that the nonparametric estimator of the formula, under regularity conditions, is asymptotically efficient under the original causal graphical model, and no formula with such property exists that only depends on a strict subset of the variables.

Derived from spiking neuron models via the diffusion approximation, the moment activation (MA) faithfully captures the nonlinear coupling of correlated neural variability. However, numerical evaluation of the MA faces significant challenges due to a number of ill-conditioned Dawson-like functions. By deriving asymptotic expansions of these functions, we develop an efficient numerical algorithm for evaluating the MA and its derivatives ensuring reliability, speed, and accuracy. We also provide exact analytical expressions for the MA in the weak fluctuation limit. Powered by this efficient algorithm, the MA may serve as an effective tool for investigating the dynamics of correlated neural variability in large-scale spiking neural circuits.

Causal phenomena associated with rare events occur across a wide range of engineering problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links, between random variables in a dynamic setting, that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel statistical independence test on data collected from time-invariant dynamical systems in which rare but consequential events occur. In particular, we exploit the time-invariance of the underlying data to construct a superimposed dataset of the system state before rare events happen at different timesteps. We then design a conditional independence test on the reorganized data. We provide non-asymptotic sample complexity bounds for the consistency of our method, and validate its performance across various simulated and real-world datasets, including incident data collected from the Caltrans Performance Measurement System (PeMS). Code containing the datasets and experiments is publicly available.

A typical desideratum for quantifying the uncertainty from a classification model as a prediction set is class-conditional singleton set calibration. That is, such sets should map to the output of well-calibrated selective classifiers, matching the observed frequencies of similar instances. Recent works proposing adaptive and localized conformal p-values for deep networks do not guarantee this behavior, nor do they achieve it empirically. Instead, we use the strong signals for prediction reliability from KNN-based approximations of Transformer networks to construct data-driven partitions for Mondrian Conformal Predictors, which are treated as weak selective classifiers that are then calibrated via a new Inductive Venn Predictor, the Venn-ADMIT Predictor. The resulting selective classifiers are well-calibrated, in a conservative but practically useful sense for a given threshold. They are inherently robust to changes in the proportions of the data partitions, and straightforward conservative heuristics provide additional robustness to covariate shifts. We compare and contrast to the quantities produced by recent Conformal Predictors on several representative and challenging natural language processing classification tasks, including class-imbalanced and distribution-shifted settings.

Statistical inverse learning aims at recovering an unknown function $f$ from randomly scattered and possibly noisy point evaluations of another function $g$, connected to $f$ via an ill-posed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cut-off operation. Moreover, we prove that the obtained rates are minimax optimal.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

北京阿比特科技有限公司