亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perception of other road users is a crucial task for intelligent vehicles. Perception systems can use on-board sensors only or be in cooperation with other vehicles or with roadside units. In any case, the performance of perception systems has to be evaluated against ground-truth data, which is a particularly tedious task and requires numerous manual operations. In this article, we propose a novel semi-automatic method for pseudo ground-truth estimation. The principle consists in carrying out experiments with several vehicles equipped with LiDAR sensors and with fixed perception systems located at the roadside in order to collaboratively build reference dynamic data. The method is based on grid mapping and in particular on the elaboration of a background map that holds relevant information that remains valid during a whole dataset sequence. Data from all agents is converted in time-stamped observations grids. A data fusion method that manages uncertainties combines the background map with observations to produce dynamic reference information at each instant. Several datasets have been acquired with three experimental vehicles and a roadside unit. An evaluation of this method is finally provided in comparison to a handmade ground truth.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 估計/估計量 · 通道 · 置信度 · 多樣性 ·
2024 年 1 月 10 日

Diversity schemes play a vital role in improving the performance of ultra-reliable communication systems by transmitting over two or more communication channels to combat fading and co-channel interference. Determining an appropriate transmission strategy that satisfies ultra-reliability constraint necessitates derivation of statistics of channel in ultra-reliable region and, subsequently, integration of these statistics into rate selection while incorporating a confidence interval to account for potential uncertainties that may arise during estimation. In this paper, we propose a novel framework for ultra-reliable real-time transmission considering both spatial diversities and ultra-reliable channel statistics based on multivariate extreme value theory. First, tail distribution of joint received power sequences obtained from different receivers is modeled while incorporating inter-relations of extreme events occurring rarely based on Poisson point process approach in MEVT. The optimum transmission strategies are then developed by determining optimum transmission rate based on estimated joint tail distribution and incorporating confidence intervals into estimations to cope with the availability of limited data. Finally, system reliability is assessed by utilizing outage probability metric. Through analysis of data obtained from the engine compartment of Fiat Linea, our study showcases the effectiveness of proposed methodology in surpassing traditional extrapolation-based approaches. This innovative method not only achieves a higher transmission rate, but also effectively addresses stringent requirements of ultra-reliability. The findings indicate that proposed rate selection framework offers a viable solution for achieving a desired target error probability by employing a higher transmission rate and reducing the amount of training data compared to conventional rate selection methods.

Gait recognition is a rapidly advancing vision technique for person identification from a distance. Prior studies predominantly employed relatively shallow networks to extract subtle gait features, achieving impressive successes in constrained settings. Nevertheless, experiments revealed that existing methods mostly produce unsatisfactory results when applied to newly released real-world gait datasets. This paper presents a unified perspective to explore how to construct deep models for state-of-the-art outdoor gait recognition, including the classical CNN-based and emerging Transformer-based architectures. Specifically, we challenge the stereotype of shallow gait models and demonstrate the superiority of explicit temporal modeling and deep transformer structure for discriminative gait representation learning. Consequently, the proposed CNN-based DeepGaitV2 series and Transformer-based SwinGait series exhibit significant performance improvements on Gait3D and GREW. As for the constrained gait datasets, the DeepGaitV2 series also reaches a new state-of-the-art in most cases, convincingly showing its practicality and generality. The source code is available at //github.com/ShiqiYu/OpenGait.

Modeling long histories plays a pivotal role in enhancing recommendation systems, allowing to capture user's evolving preferences, resulting in more precise and personalized recommendations. In this study we tackle the challenges of modeling long user histories for preference understanding in natural language. Specifically, we introduce a new User Embedding Module (UEM) that efficiently processes user history in free-form text by compressing and representing them as embeddings, to use them as soft prompts to a LM. Our experiments demonstrate the superior capability of this approach in handling significantly longer histories compared to conventional text based prompting methods, yielding substantial improvements in predictive performance. The main contribution of this research is to demonstrate the ability to bias language models with user signals represented as embeddings.

The task of answer retrieval in the legal domain aims to help users to seek relevant legal advice from massive amounts of professional responses. Two main challenges hinder applying existing answer retrieval approaches in other domains to the legal domain: (1) a huge knowledge gap between lawyers and non-professionals; and (2) a mix of informal and formal content on legal QA websites. To tackle these challenges, we propose CE_FS, a novel cross-encoder (CE) re-ranker based on the fine-grained structured inputs. CE_FS uses additional structured information in the CQA data to improve the effectiveness of cross-encoder re-rankers. Furthermore, we propose LegalQA: a real-world benchmark dataset for evaluating answer retrieval in the legal domain. Experiments conducted on LegalQA show that our proposed method significantly outperforms strong cross-encoder re-rankers fine-tuned on MS MARCO. Our novel finding is that adding the question tags of each question besides the question description and title into the input of cross-encoder re-rankers structurally boosts the rankers' effectiveness. While we study our proposed method in the legal domain, we believe that our method can be applied in similar applications in other domains.

Game development is a long process that involves many stages before a product is ready for the market. Human play testing is among the most time consuming, as testers are required to repeatedly perform tasks in the search for errors in the code. Therefore, automated testing is seen as a key technology for the gaming industry, as it would dramatically improve development costs and efficiency. Toward this end, we propose EVOLUTE, a novel imitation learning-based architecture that combines behavioural cloning (BC) with energy based models (EBMs). EVOLUTE is a two-stream ensemble model that splits the action space of autonomous agents into continuous and discrete tasks. The EBM stream handles the continuous tasks, to have a more refined and adaptive control, while the BC stream handles discrete actions, to ease training. We evaluate the performance of EVOLUTE in a shooting-and-driving game, where the agent is required to navigate and continuously identify targets to attack. The proposed model has higher generalisation capabilities than standard BC approaches, showing a wider range of behaviours and higher performances. Also, EVOLUTE is easier to train than a pure end-to-end EBM model, as discrete tasks can be quite sparse in the dataset and cause model training to explore a much wider set of possible actions while training.

As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.

Explainable recommender systems can explain their recommendation decisions, enhancing user trust in the systems. Most explainable recommender systems either rely on human-annotated rationales to train models for explanation generation or leverage the attention mechanism to extract important text spans from reviews as explanations. The extracted rationales are often confined to an individual review and may fail to identify the implicit features beyond the review text. To avoid the expensive human annotation process and to generate explanations beyond individual reviews, we propose to incorporate a geometric prior learnt from user-item interactions into a variational network which infers latent factors from user-item reviews. The latent factors from an individual user-item pair can be used for both recommendation and explanation generation, which naturally inherit the global characteristics encoded in the prior knowledge. Experimental results on three e-commerce datasets show that our model significantly improves the interpretability of a variational recommender using the Wasserstein distance while achieving performance comparable to existing content-based recommender systems in terms of recommendation behaviours.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.

北京阿比特科技有限公司