Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.
This paper presents a new generalization error analysis for Decentralized Stochastic Gradient Descent (D-SGD) based on algorithmic stability. The obtained results overhaul a series of recent works that suggested an increased instability due to decentralization and a detrimental impact of poorly-connected communication graphs on generalization. On the contrary, we show, for convex, strongly convex and non-convex functions, that D-SGD can always recover generalization bounds analogous to those of classical SGD, suggesting that the choice of graph does not matter. We then argue that this result is coming from a worst-case analysis, and we provide a refined data-dependent generalization bound for general convex functions. This new bound reveals that the choice of graph can in fact improve the worst-case bound in certain regimes, and that surprisingly, a poorly-connected graph can even be beneficial.
Self-Admitted Technical Debt (SATD) annotates development decisions that intentionally exchange long-term software artifact quality for short-term goals. Recent work explores the existence of SATD clones (duplicate or near duplicate SATD comments) in source code. Cloning of SATD in build systems (e.g., CMake and Maven) may propagate suboptimal design choices, threatening qualities of the build system that stakeholders rely upon (e.g., maintainability, reliability, repeatability). Hence, we conduct a large-scale study on 50,608 SATD comments extracted from Autotools, CMake, Maven, and Ant build systems to investigate the prevalence of SATD clones and to characterize their incidences. We observe that: (i) prior work suggests that 41-65% of SATD comments in source code are clones, but in our studied build system context, the rates range from 62% to 95%, suggesting that SATD clones are a more prevalent phenomenon in build systems than in source code; (ii) statements surrounding SATD clones are highly similar, with 76% of occurrences having similarity scores greater than 0.8; (iii) a quarter of SATD clones are introduced by the author of the original SATD statements; and (iv) among the most commonly cloned SATD comments, external factors (e.g., platform and tool configuration) are the most frequent locations, limitations in tools and libraries are the most frequent causes, and developers often copy SATD comments that describe issues to be fixed later. Our work presents the first step toward systematically understanding SATD clones in build systems and opens up avenues for future work, such as distinguishing different SATD clone behavior, as well as designing an automated recommendation system for repaying SATD effectively based on resolved clones.
Remote Attestation (RA) enables the integrity and authenticity of applications in Trusted Execution Environment (TEE) to be verified. Existing TEE RA designs employ a centralized trust model where they rely on a single provisioned secret key and a centralized verifier to establish trust for remote parties. This model is however brittle and can be untrusted under advanced attacks nowadays. Besides, most designs only provide fixed functionalities once deployed, making them hard to adapt to different needs on availability, Quality of Service (QoS), etc. Therefore, we propose JANUS, an open and resilient TEE RA scheme. To decentralize trust, we, on one hand, introduce Physically Unclonable Function (PUF) as an intrinsic root of trust (RoT) in TEE to provide additional measurements and cryptographic enhancements. On the other hand, we use blockchain and smart contract to realize decentralized verification and result audit. Furthermore, we design an automated turnout mechanism that allows JANUS to remain resilient and offer flexible RA services under various situations. We provide a UC-based security proof and demonstrate the scalability and generality of JANUS by implementing an open-sourced prototype.
Transformer-based models have dominated natural language processing and other areas in the last few years due to their superior (zero-shot) performance on benchmark datasets. However, these models are poorly understood due to their complexity and size. While probing-based methods are widely used to understand specific properties, the structures of the representation space are not systematically characterized; consequently, it is unclear how such models generalize and overgeneralize to new inputs beyond datasets. In this paper, based on a new gradient descent optimization method, we are able to explore the embedding space of a commonly used vision-language model. Using the Imagenette dataset, we show that while the model achieves over 99\% zero-shot classification performance, it fails systematic evaluations completely. Using a linear approximation, we provide a framework to explain the striking differences. We have also obtained similar results using a different model to support that our results are applicable to other transformer models with continuous inputs. We also propose a robust way to detect the modified images.
Matching problems have been widely studied in the research community, especially Ad-Auctions with many applications ranging from network design to advertising. Following the various advancements in machine learning, one natural question is whether classical algorithms can benefit from machine learning and obtain better-quality solutions. Even a small percentage of performance improvement in matching problems could result in significant gains for the studied use cases. For example, the network throughput or the revenue of Ad-Auctions can increase remarkably. This paper presents algorithms with machine learning predictions for the Online Bounded Allocation and the Online Ad-Auctions problems. We constructed primal-dual algorithms that achieve competitive performance depending on the quality of the predictions. When the predictions are accurate, the algorithms' performance surpasses previous performance bounds, while when the predictions are misleading, the algorithms maintain standard worst-case performance guarantees. We provide supporting experiments on generated data for our theoretical findings.
An algorithm effects a causal representation of relations between features and labels in the human's perception. Such a representation might conflict with the human's prior belief. Explanations can direct the human's attention to the conflicting feature and away from other relevant features. This leads to causal overattribution and may adversely affect the human's information processing. In a field experiment we implemented an XGBoost-trained model as a decision-making aid for counselors at a public employment service to predict candidates' risk of long-term unemployment. The treatment group of counselors was also provided with SHAP. The results show that the quality of the human's decision-making is worse when a feature on which the human holds a conflicting prior belief is displayed as part of the explanation.
To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.