亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-Admitted Technical Debt (SATD) annotates development decisions that intentionally exchange long-term software artifact quality for short-term goals. Recent work explores the existence of SATD clones (duplicate or near duplicate SATD comments) in source code. Cloning of SATD in build systems (e.g., CMake and Maven) may propagate suboptimal design choices, threatening qualities of the build system that stakeholders rely upon (e.g., maintainability, reliability, repeatability). Hence, we conduct a large-scale study on 50,608 SATD comments extracted from Autotools, CMake, Maven, and Ant build systems to investigate the prevalence of SATD clones and to characterize their incidences. We observe that: (i) prior work suggests that 41-65% of SATD comments in source code are clones, but in our studied build system context, the rates range from 62% to 95%, suggesting that SATD clones are a more prevalent phenomenon in build systems than in source code; (ii) statements surrounding SATD clones are highly similar, with 76% of occurrences having similarity scores greater than 0.8; (iii) a quarter of SATD clones are introduced by the author of the original SATD statements; and (iv) among the most commonly cloned SATD comments, external factors (e.g., platform and tool configuration) are the most frequent locations, limitations in tools and libraries are the most frequent causes, and developers often copy SATD comments that describe issues to be fixed later. Our work presents the first step toward systematically understanding SATD clones in build systems and opens up avenues for future work, such as distinguishing different SATD clone behavior, as well as designing an automated recommendation system for repaying SATD effectively based on resolved clones.

相關內容

Keeping dependencies up-to-date prevents software supply chain attacks through outdated and vulnerable dependencies. Developers may use packages' dependency update practice as one of the selection criteria for choosing a package as a dependency. However, the lack of metrics characterizing packages' dependency update practice makes this assessment difficult. To measure the up-to-date characteristics of packages, we focus on the dependency management aspect and propose two update metrics: Time-Out-Of-Date (TOOD) and Post-Fix-Exposure-Time (PFET), to measure the updatedness of dependencies and updatedness of vulnerable dependencies, respectively. We design an algorithm to stabilize the dependency relationships in different time intervals and compute the proposed metrics for each package. Using our proposed metrics, we conduct a large-scale empirical study of update metrics with 2.9M packages, 66.8M package versions, and 26.8M unique package-dependency relations in NPM, PyPI, and Cargo, ranging from the year 2004 to 2023. We analyze the characteristics of the proposed metrics for capturing packages' dependency update practice in the three ecosystems. Given that the TOOD metric generates a greater volume of data than the PFET metric, we further explore the numerical relationship between these metrics to assess their potential as substitutes for vulnerability counts metrics. We find that PyPI packages update dependencies faster than NPM and Cargo. Conversely, Cargo packages update their vulnerable dependencies faster than NPM and PyPI. We also find that the general purpose update metric, TOOD, can be a proxy for the security-focused update metric, PFET.

Multi-Agent Path Finding (MAPF) in crowded environments presents a challenging problem in motion planning, aiming to find collision-free paths for all agents in the system. MAPF finds a wide range of applications in various domains, including aerial swarms, autonomous warehouse robotics, and self-driving vehicles. Current approaches to MAPF generally fall into two main categories: centralized and decentralized planning. Centralized planning suffers from the curse of dimensionality when the number of agents or states increases and thus does not scale well in large and complex environments. On the other hand, decentralized planning enables agents to engage in real-time path planning within a partially observable environment, demonstrating implicit coordination. However, they suffer from slow convergence and performance degradation in dense environments. In this paper, we introduce CRAMP, a novel crowd-aware decentralized reinforcement learning approach to address this problem by enabling efficient local communication among agents via Graph Neural Networks (GNNs), facilitating situational awareness and decision-making capabilities in congested environments. We test CRAMP on simulated environments and demonstrate that our method outperforms the state-of-the-art decentralized methods for MAPF on various metrics. CRAMP improves the solution quality up to 59% measured in makespan and collision count, and up to 35% improvement in success rate in comparison to previous methods.

Deciding what combination of operators to use across the Edge AI tiers to achieve specific latency and model performance requirements is an open question for MLOps engineers. This study aims to empirically assess the accuracy vs inference time trade-off of different black-box Edge AI deployment strategies, i.e., combinations of deployment operators and deployment tiers. In this paper, we conduct inference experiments involving 3 deployment operators (i.e., Partitioning, Quantization, Early Exit), 3 deployment tiers (i.e., Mobile, Edge, Cloud) and their combinations on four widely used Computer-Vision models to investigate the optimal strategies from the point of view of MLOps developers. Our findings suggest that Edge deployment using the hybrid Quantization + Early Exit operator could be preferred over non-hybrid operators (Quantization/Early Exit on Edge, Partition on Mobile-Edge) when faster latency is a concern at medium accuracy loss. However, when minimizing accuracy loss is a concern, MLOps engineers should prefer using only a Quantization operator on edge at a latency reduction or increase, respectively over the Early Exit/Partition (on edge/mobile-edge) and Quantized Early Exit (on edge) operators. In scenarios constrained by Mobile CPU/RAM resources, a preference for Partitioning across mobile and edge tiers is observed over mobile deployment. For models with smaller input data samples (such as FCN), a network-constrained cloud deployment can also be a better alternative than Mobile/Edge deployment and Partitioning strategies. For models with large input data samples (ResNet, ResNext, DUC), an edge tier having higher network/computational capabilities than Cloud/Mobile can be a more viable option than Partitioning and Mobile/Cloud deployment strategies.

Large language models (LLMs) have shown remarkable progress in automated code generation. Yet, incorporating LLM-based code generation into real-life software projects poses challenges, as the generated code may contain errors in API usage, class, data structure, or missing project-specific information. As much of this project-specific context cannot fit into the prompts of LLMs, we must find ways to allow the model to explore the project-level code context. To this end, this paper puts forward a novel approach, termed ProCoder, which iteratively refines the project-level code context for precise code generation, guided by the compiler feedback. In particular, ProCoder first leverages compiler techniques to identify a mismatch between the generated code and the project's context. It then iteratively aligns and fixes the identified errors using information extracted from the code repository. We integrate ProCoder with two representative LLMs, i.e., GPT-3.5-Turbo and Code Llama (13B), and apply it to Python code generation. Experimental results show that ProCoder significantly improves the vanilla LLMs by over 80% in generating code dependent on project context, and consistently outperforms the existing retrieval-based code generation baselines.

This two-part paper studies a point-to-point resonant beam communication (RBCom) system, where two separately deployed retroreflectors are adopted to generate the resonant beam between the transmitter and the receiver, and analyzes the transmission rate of the considered system under both the quasi-static and mobile scenarios. Part I of this paper focuses on the quasi-static scenario where the locations of the transmitter and the receiver are relatively fixed. Specifically, we propose a new information-bearing scheme which adopts a synchronization-based amplitude modulation method to mitigate the echo interference caused by the reflected resonant beam. With this scheme, we show that the quasi-static RBCom channel is equivalent to a Markov channel and can be further simplified as an amplitude-constrained additive white Gaussian noise channel. Moreover, we develop an algorithm that jointly employs the bisection and exhaustive search to maximize its capacity upper and lower bounds. Finally, numerical results validate our analysis. Part II of this paper discusses the performance of the RBCom system under the mobile scenario.

We present SIM-FSVGD for learning robot dynamics from data. As opposed to traditional methods, SIM-FSVGD leverages low-fidelity physical priors, e.g., in the form of simulators, to regularize the training of neural network models. While learning accurate dynamics already in the low data regime, SIM-FSVGD scales and excels also when more data is available. We empirically show that learning with implicit physical priors results in accurate mean model estimation as well as precise uncertainty quantification. We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system. Using model-based RL, we demonstrate a highly dynamic parking maneuver with drifting, using less than half the data compared to the state of the art.

Autonomous systems, including generative AI, have been adopted faster than previous digital innovations. Their impact on society might as well be more profound, with a radical restructuring of the economy of knowledge and dramatic consequences for social and institutional balances. Different attitudes to control these systems have emerged rooted in the classical pillars of legal systems, proprietary rights, and social responsibility. We show how an illusion of control might be guiding governments and regulators, while autonomous systems might be driving us to inescapable delusion.

Context and motivation: Software Product Lines (SPL) enable the creation of software product families with shared core components using feature models to model variability. Choosing features from a feature model to generate a product may not be sufficient in certain situations because the application engineer may need to be able to decide on configuration time the system's elements to which a certain feature will be applied. Therefore, there is a need to select which features have to be included in the product but also to which of its elements they have to be applied. Objective: We introduce local features that are selectively applied to specific parts of the system during product configuration. Results: We formalize local features using multimodels to establish relationships between local features and other elements of the system models. The paper includes examples illustrating the motivation for local features, a formal definition, and a domain-specific language for specification and implementation. Finally, we present a case study in a real scenario that shows how the concept of local features allowed us to define the variability of a complex system. The examples and the application case show that the proposal achieves higher customization levels at the application engineering phase.

AI-Generated Content (AIGC), as a novel manner of providing Metaverse services in the forthcoming Internet paradigm, can resolve the obstacles of immersion requirements. Concurrently, edge computing, as an evolutionary paradigm of computing in communication systems, effectively augments real-time interactive services. In pursuit of enhancing the accessibility of AIGC services, the deployment of AIGC models (e.g., diffusion models) to edge servers and local devices has become a prevailing trend. Nevertheless, this approach faces constraints imposed by battery life and computational resources when tasks are offloaded to local devices, limiting the capacity to deliver high-quality content to users while adhering to stringent latency requirements. So there will be a tradeoff between the utility of AIGC models and offloading decisions in the edge computing paradigm. This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage. Moreover, we take the average error into consideration as the metric for evaluating the quality of the generated results. Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司