We extend the recently introduced setting of coherent differentiation for taking into account not only differentiation, but also Taylor expansion in categories which are not necessarily (left)additive.The main idea consists in extending summability into an infinitary functor which intuitively maps any object to the object of its countable summable families.This functor is endowed with a canonical structure of bimonad.In a linear logical categorical setting, Taylor expansion is then axiomatized as a distributive law between this summability functor and the resource comonad (aka.~exponential), allowing to extend the summability functor into a bimonad on the Kleisli category of the resource comonad: this extended functor computes the Taylor expansion of the (nonlinear) morphisms of the Kleisli category.We also show how this categorical axiomatizations of Taylor expansion can be generalized to arbitrary cartesian categories, leading to a general theory of Taylor expansion formally similar to that of differential cartesian categories, although it does not require the underlying cartesian category to be left additive.We provide several examples of concrete categories which arise in denotational semantics and feature such analytic structures.
We consider the problem of assessing whether, in an individual case, there is a causal relationship between an observed exposure and a response variable. When data are available on similar individuals we may be able to estimate prospective probabilities, but even under ideal conditions these are typically inadequate to identify the "probability of causation": instead we can only derive bounds for this. These bounds can be improved or amended when we have information on additional variables, such as mediators or covariates. When a covariate is unobserved or ignored, this will typically lead to biased inferences. We show by examples how serious such biases can be.
Due to the ability to provide superior error-correction performance, the successive cancellation list (SCL) algorithm is widely regarded as one of the most promising decoding algorithms for polar codes with short-to-moderate code lengths. However, the application of SCL decoding in low-latency communication scenarios is limited due to its sequential nature. To reduce the decoding latency, developing tailored fast and efficient list decoding algorithms of specific polar substituent codes (special nodes) is a promising solution. Recently, fast list decoding algorithms are proposed by considering special nodes with low code rates. Aiming to further speedup the SCL decoding, this paper presents fast list decoding algorithms for two types of high-rate special nodes, namely single-parity-check (SPC) nodes and sequence rate one or single-parity-check (SR1/SPC) nodes. In particular, we develop two classes of fast list decoding algorithms for these nodes, where the first class uses a sequential decoding procedure to yield decoding latency that is linear with the list size, and the second further parallelizes the decoding process by pre-determining the redundant candidate paths offline. Simulation results show that the proposed list decoding algorithms are able to achieve up to 70.7\% lower decoding latency than state-of-the-art fast SCL decoders, while exhibiting the same error-correction performance.
We investigate a formalism for the conditions of a successful explanation of AI. We consider "success" to depend not only on what information the explanation contains, but also on what information the human explainee understands from it. Theory of mind literature discusses the folk concepts that humans use to understand and generalize behavior. We posit that folk concepts of behavior provide us with a "language" that humans understand behavior with. We use these folk concepts as a framework of social attribution by the human explainee - the information constructs that humans are likely to comprehend from explanations - by introducing a blueprint for an explanatory narrative (Figure 1) that explains AI behavior with these constructs. We then demonstrate that many XAI methods today can be mapped to folk concepts of behavior in a qualitative evaluation. This allows us to uncover their failure modes that prevent current methods from explaining successfully - i.e., the information constructs that are missing for any given XAI method, and whose inclusion can decrease the likelihood of misunderstanding AI behavior.
Efficiently approximating the probability of system failure has gained increasing importance as expensive simulations begin to play a larger role in reliability quantification tasks in areas such as structural design, power grid design, and safety certification among others. This work derives credible intervals on the probability of failure for a simulation which we assume is a realizations of a Gaussian process. We connect these intervals to binary classification error and comment on their applicability to a broad class of iterative schemes proposed throughout the literature. A novel iterative sampling scheme is proposed which can suggest multiple samples per batch for simulations with parallel implementations. We empirically test our scalable, open-source implementation on a variety simulations including a Tsunami model where failure is quantified in terms of maximum wave hight.
Quantile regression and conditional density estimation can reveal structure that is missed by mean regression, such as multimodality and skewness. In this paper, we introduce a deep learning generative model for joint quantile estimation called Penalized Generative Quantile Regression (PGQR). Our approach simultaneously generates samples from many random quantile levels, allowing us to infer the conditional distribution of a response variable given a set of covariates. Our method employs a novel variability penalty to avoid the problem of vanishing variability, or memorization, in deep generative models. Further, we introduce a new family of partial monotonic neural networks (PMNN) to circumvent the problem of crossing quantile curves. A major benefit of PGQR is that it can be fit using a single optimization, thus bypassing the need to repeatedly train the model at multiple quantile levels or use computationally expensive cross-validation to tune the penalty parameter. We illustrate the efficacy of PGQR through extensive simulation studies and analysis of real datasets. Code to implement our method is available at //github.com/shijiew97/PGQR.
The curse-of-dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs, as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in 100,000 effective dimensions in 12 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.
We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108\% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66\% gain over SOTA on Tiny-ImageNet and 37\% on CIFAR-100.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.