Community rating is a policy that mandates uniform premium regardless of the risk factors. In this paper, our focus narrows to the single contract interpretation wherein we establish a theoretical framework for community rating using Stiglitz's (1977) monopoly model in which there is a continuum of agents. We exhibit profitability conditions and show that, under mild regularity conditions, the optimal premium is unique and satisfies the inverse elasticity rule. Our numerical analysis, using realistic parameter values, reveals that under regulation, a 10% increase in indemnity is possible with minimal impact on other variables.
This white paper outlines a long-term scientific vision for the development of digital-democracy technology. We contend that if digital democracy is to meet the ambition of enabling a participatory renewal in our societies, then a comprehensive multi-methods research effort is required that could, over the years, support its development in a democratically principled, empirically and computationally informed way. The paper is co-authored by an international and interdisciplinary team of researchers and arose from the Lorentz Center Workshop on ``Algorithmic Technology for Democracy'' (Leiden, October 2022).
Maintainers are now self-sabotaging their work in order to take political or economic stances, a practice referred to as "protestware". In this poster, we present our approach to understand how the discourse about such an attack went viral, how it is received by the community, and whether developers respond to the attack in a timely manner. We study two notable protestware cases, i.e., Colors.js and es5-ext, comparing with discussions of a typical security vulnerability as a baseline, i.e., Ua-parser, and perform a thematic analysis of more than two thousand protest-related posts to extract the different narratives when discussing protestware.
This study examines the use of embedded tweets in online news media. In particular, we add to the previous literature by exploring embedded tweets across reliable and unreliable news outlets. We use a mixed-method analysis to examine how the function and frequency of embedded tweets change across outlet reliability and news topic. We find that, no matter the outlet reliability, embedded tweets are most often used to relay the opinions of elites, to syndicate information from another news source, or to self-cite information an outlet previously produced. Our results also show some notable differences between reliable media and fringe media's use of tweets. Namely, fringe media embed tweets more and use those tweets as the source of news more than reliable media. Our work adds to the literature on hybrid media systems and the normalization of social media in journalism.
Digital circuits, despite having been studied for nearly a century and used at scale for about half that time, have until recently evaded a fully compositional theoretical understanding, in which arbitrary circuits may be freely composed together without consulting their internals. Recent work remedied this theoretical shortcoming by showing how digital circuits can be presented compositionally as morphisms in a freely generated symmetric traced category. However, this was done informally; in this paper we refine and expand the previous work in several ways, culminating in the presentation of three sound and complete semantics for digital circuits: denotational, operational and algebraic. For the denotational semantics, we establish a correspondence between stream functions with certain properties and circuits constructed syntactically. For the operational semantics, we present the reductions required to model how a circuit processes a value, including the addition of a new reduction for eliminating non-delay-guarded feedback; this leads to an adequate notion of observational equivalence for digital circuits. Finally, we define a new family of equations for translating circuits into bisimilar circuits of a 'normal form', leading to a complete algebraic semantics for sequential circuits
In this paper, we discuss codes for distributed storage systems with hierarchical repair properties. Specifically, we devote attention to the repair problem of the rack-aware storage model with locality, aiming to enhance the system's ability to repair a small number of erasures within each rack by locality and efficiently handling a rack erasure with a small repair bandwidth. By employing the regenerating coding technique, we construct a family of array codes with $(r,u-r+1)$-locality, where the $u$ nodes of each repair set are systematically organized into a rack. When the number of failures is less than $u - r + 1$, these failures can be repaired without counting the system bandwidth. In cases where the number of failures exceeds the locality, the failed nodes within a single rack can be recovered with optimal cross-rack bandwidth.
In this work, we study a natural nonparametric estimator of the transition probability matrices of a finite controlled Markov chain. We consider an offline setting with a fixed dataset, collected using a so-called logging policy. We develop sample complexity bounds for the estimator and establish conditions for minimaxity. Our statistical bounds depend on the logging policy through its mixing properties. We show that achieving a particular statistical risk bound involves a subtle and interesting trade-off between the strength of the mixing properties and the number of samples. We demonstrate the validity of our results under various examples, such as ergodic Markov chains, weakly ergodic inhomogeneous Markov chains, and controlled Markov chains with non-stationary Markov, episodic, and greedy controls. Lastly, we use these sample complexity bounds to establish concomitant ones for offline evaluation of stationary Markov control policies.
In this article, we review the literature on statistical theories of neural networks from three perspectives. In the first part, results on excess risks for neural networks are reviewed in the nonparametric framework of regression or classification. These results rely on explicit constructions of neural networks, leading to fast convergence rates of excess risks, in that tools from the approximation theory are adopted. Through these constructions, the width and depth of the networks can be expressed in terms of sample size, data dimension, and function smoothness. Nonetheless, their underlying analysis only applies to the global minimizer in the highly non-convex landscape of deep neural networks. This motivates us to review the training dynamics of neural networks in the second part. Specifically, we review papers that attempt to answer ``how the neural network trained via gradient-based methods finds the solution that can generalize well on unseen data.'' In particular, two well-known paradigms are reviewed: the Neural Tangent Kernel (NTK) paradigm, and Mean-Field (MF) paradigm. In the last part, we review the most recent theoretical advancements in generative models including Generative Adversarial Networks (GANs), diffusion models, and in-context learning (ICL) in the Large Language Models (LLMs). The former two models are known to be the main pillars of the modern generative AI era, while ICL is a strong capability of LLMs in learning from a few examples in the context. Finally, we conclude the paper by suggesting several promising directions for deep learning theory.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.