亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.

相關內容

Input-output conformance simulation (iocos) has been proposed by Gregorio-Rodr\'iguez, Llana and Mart\'inez-Torres as a simulation-based behavioural preorder underlying model-based testing. This relation is inspired by Tretmans' classic ioco relation, but has better worst-case complexity than ioco and supports stepwise refinement. The goal of this paper is to develop the theory of iocos by studying logical characterisations of this relation, rule formats for it and its compositionality. More specifically, this article presents characterisations of iocos in terms of modal logics and compares them with an existing logical characterisation for ioco proposed by Beohar and Mousavi. It also offers a characteristic-formula construction for iocos over finite processes in an extension of the proposed modal logics with greatest fixed points. A precongruence rule format for iocos and a rule format ensuring that operations take quiescence properly into account are also given. Both rule formats are based on the GSOS format by Bloom, Istrail and Meyer. The general modal decomposition methodology of Fokkink and van Glabbeek is used to show how to check the satisfaction of properties expressed in the logic for iocos in a compositional way for operations specified by rules in the precongruence rule format for iocos .

We propose a Bernoulli-barycentric rational matrix collocation method for two-dimensional evolutionary partial differential equations (PDEs) with variable coefficients that combines Bernoulli polynomials with barycentric rational interpolations in time and space, respectively. The theoretical accuracy $O\left((2\pi)^{-N}+h_x^{d_x-1}+h_y^{d_y-1}\right)$ of our numerical scheme is proven, where $N$ is the number of basis functions in time, $h_x$ and $h_y$ are the grid sizes in the $x$, $y$-directions, respectively, and $0\leq d_x\leq \frac{b-a}{h_x},~0\leq d_y\leq\frac{d-c}{h_y}$. For the efficient solution of the relevant linear system arising from the discretizations, we introduce a class of dimension expanded preconditioners that take the advantage of structural properties of the coefficient matrices, and we present a theoretical analysis of eigenvalue distributions of the preconditioned matrices. The effectiveness of our proposed method and preconditioners are studied for solving some real-world examples represented by the heat conduction equation, the advection-diffusion equation, the wave equation and telegraph equations.

A roadmap for an algebraic set $V$ defined by polynomials with coefficients in some real field, say $\mathbb{R}$, is an algebraic curve contained in $V$ whose intersection with all connected components of $V\cap\mathbb{R}^{n}$ is connected. These objects, introduced by Canny, can be used to answer connectivity queries over $V\cap \mathbb{R}^{n}$ provided that they are required to contain the finite set of query points $\mathcal{P}\subset V$; in this case,we say that the roadmap is associated to $(V, \mathcal{P})$. In this paper, we make effective a connectivity result we previously proved, to design a Monte Carlo algorithm which, on input (i) a finite sequence of polynomials defining $V$ (and satisfying some regularity assumptions) and (ii) an algebraic representation of finitely many query points $\mathcal{P}$ in $V$, computes a roadmap for $(V, \mathcal{P})$. This algorithm generalizes the nearly optimal one introduced by the last two authors by dropping a boundedness assumption on the real trace of $V$. The output size and running times of our algorithm are both polynomial in $(nD)^{n\log d}$, where $D$ is the maximal degree of the input equations and $d$ is the dimension of $V$. As far as we know, the best previously known algorithm dealing with such sets has an output size and running time polynomial in $(nD)^{n\log^2 n}$.

We study the problem of identifying a small set $k\sim n^\theta$, $0<\theta<1$, of infected individuals within a large population of size $n$ by testing groups of individuals simultaneously. All tests are conducted concurrently. The goal is to minimise the total number of tests required. In this paper we make the (realistic) assumption that tests are noisy, i.e.\ that a group that contains an infected individual may return a negative test result or one that does not contain an infected individual may return a positive test results with a certain probability. The noise need not be symmetric. We develop an algorithm called SPARC that correctly identifies the set of infected individuals up to $o(k)$ errors with high probability with the asymptotically minimum number of tests. Additionally, we develop an algorithm called SPEX that exactly identifies the set of infected individuals w.h.p. with a number of tests that matches the information-theoretic lower bound for the constant column design, a powerful and well-studied test design.

We explore a linear inhomogeneous elasticity equation with random Lam\'e parameters. The latter are parameterized by a countably infinite number of terms in separated expansions. The main aim of this work is to estimate expected values (considered as an infinite dimensional integral on the parametric space corresponding to the random coefficients) of linear functionals acting on the solution of the elasticity equation. To achieve this, the expansions of the random parameters are truncated, a high-order quasi-Monte Carlo (QMC) is combined with a sparse grid approach to approximate the high dimensional integral, and a Galerkin finite element method (FEM) is introduced to approximate the solution of the elasticity equation over the physical domain. The error estimates from (1) truncating the infinite expansion, (2) the Galerkin FEM, and (3) the QMC sparse grid quadrature rule are all studied. For this purpose, we show certain required regularity properties of the continuous solution with respect to both the parametric and physical variables. To achieve our theoretical regularity and convergence results, some reasonable assumptions on the expansions of the random coefficients are imposed. Finally, some numerical results are delivered.

The joint bidiagonalization (JBD) process iteratively reduces a matrix pair $\{A,L\}$ to two bidiagonal forms simultaneously, which can be used for computing a partial generalized singular value decomposition (GSVD) of $\{A,L\}$. The process has a nested inner-outer iteration structure, where the inner iteration usually can not be computed exactly. In this paper, we study the inaccurately computed inner iterations of JBD by first investigating influence of computational error of the inner iteration on the outer iteration, and then proposing a reorthogonalized JBD (rJBD) process to keep orthogonality of a part of Lanczos vectors. An error analysis of the rJBD is carried out to build up connections with Lanczos bidiagonalizations. The results are then used to investigate convergence and accuracy of the rJBD based GSVD computation. It is shown that the accuracy of computed GSVD components depend on the computing accuracy of inner iterations and condition number of $(A^T,L^T)^T$ while the convergence rate is not affected very much. For practical JBD based GSVD computations, our results can provide a guideline for choosing a proper computing accuracy of inner iterations in order to obtain approximate GSVD components with a desired accuracy. Numerical experiments are made to confirm our theoretical results.

Motivated by the desire to understand stochastic algorithms for nonconvex optimization that are robust to their hyperparameter choices, we analyze a mini-batched prox-linear iterative algorithm for the problem of recovering an unknown rank-1 matrix from rank-1 Gaussian measurements corrupted by noise. We derive a deterministic recursion that predicts the error of this method and show, using a non-asymptotic framework, that this prediction is accurate for any batch-size and a large range of step-sizes. In particular, our analysis reveals that this method, though stochastic, converges linearly from a local initialization with a fixed step-size to a statistical error floor. Our analysis also exposes how the batch-size, step-size, and noise level affect the (linear) convergence rate and the eventual statistical estimation error, and we demonstrate how to use our deterministic predictions to perform hyperparameter tuning (e.g. step-size and batch-size selection) without ever running the method. On a technical level, our analysis is enabled in part by showing that the fluctuations of the empirical iterates around our deterministic predictions scale with the error of the previous iterate.

We develop a sparse spectral method for a class of fractional differential equations, posed on $\mathbb{R}$, in one dimension. These equations can include sqrt-Laplacian, Hilbert, derivative and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on $[-1,1]$ whereas the latter have global support. The global approximation space can contain different affine transformations of the basis, mapping $[-1,1]$ to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving $K$ independent sparse linear systems of size $\mathcal{O}(n)\times \mathcal{O}(n)$, with $\mathcal{O}(n)$ nonzero entries, where $K$ is the number of different intervals and $n$ is the highest polynomial degree contained in the sum space. This results in an $\mathcal{O}(n)$ complexity solve. Applications to fractional heat and wave equations are considered.

We study the dependent type theory CaTT, introduced by Finster and Mimram, which presents the theory of weak $\omega$-categories, following the idea that type theories can be considered as presentations of generalized algebraic theories. Our main contribution is a formal proof that the models of this type theory correspond precisely to weak $\omega$-categories, as defined by Maltsiniotis, by generalizing a definition proposed by Grothendieck for weak $\omega$-groupoids: Those are defined as suitable presheaves over a cat-coherator, which is a category encoding structure expected to be found in an $\omega$-category. This comparison is established by proving the initiality conjecture for the type theory CaTT, in a way which suggests the possible generalization to a nerve theorem for a certain class of dependent type theories

This paper proposes a novel technique for the approximation of strong solutions $u \in C(\overline{\Omega}) \cap W^{2,n}_\mathrm{loc}(\Omega)$ to uniformly elliptic linear PDE of second order in nondivergence form with continuous leading coefficient in nonsmooth domains by finite element methods. These solutions satisfy the Alexandrov-Bakelman-Pucci (ABP) maximum principle, which provides an a~posteriori error control for $C^1$ conforming approximations. By minimizing this residual, we obtain an approximation to the solution $u$ in the $L^\infty$ norm. Although discontinuous functions do not satisfy the ABP maximum principle, this approach extends to nonconforming FEM as well thanks to well-established enrichment operators. Convergence of the proposed FEM is established for uniform mesh-refinements. The built-in a~posteriori error control (even for inexact solve) can be utilized in adaptive computations for the approximation of singular solutions, which performs superiorly in the numerical benchmarks in comparison to the uniform mesh-refining algorithm.

北京阿比特科技有限公司