Input-output conformance simulation (iocos) has been proposed by Gregorio-Rodr\'iguez, Llana and Mart\'inez-Torres as a simulation-based behavioural preorder underlying model-based testing. This relation is inspired by Tretmans' classic ioco relation, but has better worst-case complexity than ioco and supports stepwise refinement. The goal of this paper is to develop the theory of iocos by studying logical characterisations of this relation, rule formats for it and its compositionality. More specifically, this article presents characterisations of iocos in terms of modal logics and compares them with an existing logical characterisation for ioco proposed by Beohar and Mousavi. It also offers a characteristic-formula construction for iocos over finite processes in an extension of the proposed modal logics with greatest fixed points. A precongruence rule format for iocos and a rule format ensuring that operations take quiescence properly into account are also given. Both rule formats are based on the GSOS format by Bloom, Istrail and Meyer. The general modal decomposition methodology of Fokkink and van Glabbeek is used to show how to check the satisfaction of properties expressed in the logic for iocos in a compositional way for operations specified by rules in the precongruence rule format for iocos .
We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in 3-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with two existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.
Importance Sampling (IS), an effective variance reduction strategy in Monte Carlo (MC) simulation, is frequently utilized for Bayesian inference and other statistical challenges. Quasi-Monte Carlo (QMC) replaces the random samples in MC with low discrepancy points and has the potential to substantially enhance error rates. In this paper, we integrate IS with a randomly shifted rank-1 lattice rule, a widely used QMC method, to approximate posterior expectations arising from Bayesian Inverse Problems (BIPs) where the posterior density tends to concentrate as the intensity of noise diminishes. Within the framework of weighted Hilbert spaces, we first establish the convergence rate of the lattice rule for a large class of unbounded integrands. This method extends to the analysis of QMC combined with IS in BIPs. Furthermore, we explore the robustness of the IS-based randomly shifted rank-1 lattice rule by determining the quadrature error rate with respect to the noise level. The effects of using Gaussian distributions and $t$-distributions as the proposal distributions on the error rate of QMC are comprehensively investigated. We find that the error rate may deteriorate at low intensity of noise when using improper proposals, such as the prior distribution. To reclaim the effectiveness of QMC, we propose a new IS method such that the lattice rule with $N$ quadrature points achieves an optimal error rate close to $O(N^{-1})$, which is insensitive to the noise level. Numerical experiments are conducted to support the theoretical results.
The merit factor of a $\{-1, 1\}$ binary sequence measures the collective smallness of its non-trivial aperiodic autocorrelations. Binary sequences with large merit factor are important in digital communications because they allow the efficient separation of signals from noise. It is a longstanding open question whether the maximum merit factor is asymptotically unbounded and, if so, what is its limiting value. Attempts to answer this question over almost sixty years have identified certain classes of binary sequences as particularly important: skew-symmetric sequences, symmetric sequences, and anti-symmetric sequences. Using only elementary methods, we find an exact formula for the mean and variance of the reciprocal merit factor of sequences in each of these classes, and in the class of all binary sequences. This provides a much deeper understanding of the distribution of the merit factor in these four classes than was previously available. A consequence is that, for each of the four classes, the merit factor of a sequence drawn uniformly at random from the class converges in probability to a constant as the sequence length increases.
We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.
Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.
In this work, we derive a $\gamma$-robust a posteriori error estimator for finite element approximations of the Allen-Cahn equation with variable non-degenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.
Reconstructing a dynamic object with affine motion in computerized tomography (CT) leads to motion artifacts if the motion is not taken into account. In most cases, the actual motion is neither known nor can be determined easily. As a consequence, the respective model that describes CT is incomplete. The iterative RESESOP-Kaczmarz method can - under certain conditions and by exploiting the modeling error - reconstruct dynamic objects at different time points even if the exact motion is unknown. However, the method is very time-consuming. To speed the reconstruction process up and obtain better results, we combine the following three steps: 1. RESESOP-Kacmarz with only a few iterations is implemented to reconstruct the object at different time points. 2. The motion is estimated via landmark detection, e.g. using deep learning. 3. The estimated motion is integrated into the reconstruction process, allowing the use of dynamic filtered backprojection. We give a short review of all methods involved and present numerical results as a proof of principle.
The non-linear collision-induced breakage equation has significant applications in particulate processes. Two semi-analytical techniques, namely homotopy analysis method (HAM) and accelerated homotopy perturbation method (AHPM) are investigated along with the well-known finite volume method (FVM) to comprehend the dynamical behavior of the non-linear system, i.e., the concentration function, the total number and the total mass of the particles in the system. The theoretical convergence analyses of the series solutions of HAM and AHPM are discussed. In addition, the error estimations of the truncated solutions of both methods equip the maximum absolute error bound. To justify the applicability and accuracy of these methods, numerical simulations are compared with the findings of FVM and analytical solutions considering three physical problems.
We propose an operator learning approach to accelerate geometric Markov chain Monte Carlo (MCMC) for solving infinite-dimensional nonlinear Bayesian inverse problems. While geometric MCMC employs high-quality proposals that adapt to posterior local geometry, it requires computing local gradient and Hessian information of the log-likelihood, incurring a high cost when the parameter-to-observable (PtO) map is defined through expensive model simulations. We consider a delayed-acceptance geometric MCMC method driven by a neural operator surrogate of the PtO map, where the proposal is designed to exploit fast surrogate approximations of the log-likelihood and, simultaneously, its gradient and Hessian. To achieve a substantial speedup, the surrogate needs to be accurate in predicting both the observable and its parametric derivative (the derivative of the observable with respect to the parameter). Training such a surrogate via conventional operator learning using input--output samples often demands a prohibitively large number of model simulations. In this work, we present an extension of derivative-informed operator learning [O'Leary-Roseberry et al., J. Comput. Phys., 496 (2024)] using input--output--derivative training samples. Such a learning method leads to derivative-informed neural operator (DINO) surrogates that accurately predict the observable and its parametric derivative at a significantly lower training cost than the conventional method. Cost and error analysis for reduced basis DINO surrogates are provided. Numerical studies on PDE-constrained Bayesian inversion demonstrate that DINO-driven MCMC generates effective posterior samples 3--9 times faster than geometric MCMC and 60--97 times faster than prior geometry-based MCMC. Furthermore, the training cost of DINO surrogates breaks even after collecting merely 10--25 effective posterior samples compared to geometric MCMC.
Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on single-step Feynman-Kitaev verification of an analog quantum simulation, in which the verifier need only run an $O(\lambda^2)$-time classical computation, and the prover need only prepare $O(1)$ samples of a history state and perform $O(\lambda^2)$ single-qubit measurements, for a security parameter $\lambda$. We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations.