亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emerging from the monolithic pairwise attention mechanism in conventional Transformer models, there is a growing interest in leveraging sparse interactions that align more closely with biological principles. Approaches including the Set Transformer and the Perceiver employ cross-attention consolidated with a latent space that forms an attention bottleneck with limited capacity. Building upon recent neuroscience studies of Global Workspace Theory and associative memory, we propose the Associative Transformer (AiT). AiT induces low-rank explicit memory that serves as both priors to guide bottleneck attention in the shared workspace and attractors within associative memory of a Hopfield network. Through joint end-to-end training, these priors naturally develop module specialization, each contributing a distinct inductive bias to form attention bottlenecks. A bottleneck can foster competition among inputs for writing information into the memory. We show that AiT is a sparse representation learner, learning distinct priors through the bottlenecks that are complexity-invariant to input quantities and dimensions. AiT demonstrates its superiority over methods such as the Set Transformer, Vision Transformer, and Coordination in various vision tasks.

相關內容

這種方法被稱為Sparse Coding。通俗的說,就是將一個信號表示為一組基的線性組合,而且要求只需要較少的幾個基就可以將信號表示出來

Continuous diffusion models are commonly acknowledged to display a deterministic probability flow, whereas discrete diffusion models do not. In this paper, we aim to establish the fundamental theory for the probability flow of discrete diffusion models. Specifically, we first prove that the continuous probability flow is the Monge optimal transport map under certain conditions, and also present an equivalent evidence for discrete cases. In view of these findings, we are then able to define the discrete probability flow in line with the principles of optimal transport. Finally, drawing upon our newly established definitions, we propose a novel sampling method that surpasses previous discrete diffusion models in its ability to generate more certain outcomes. Extensive experiments on the synthetic toy dataset and the CIFAR-10 dataset have validated the effectiveness of our proposed discrete probability flow. Code is released at: //github.com/PangzeCheung/Discrete-Probability-Flow.

Inverse reinforcement learning (IRL) seeks to learn the reward function from expert trajectories, to understand the task for imitation or collaboration thereby removing the need for manual reward engineering. However, IRL in the context of large, high-dimensional problems with unknown dynamics has been particularly challenging. In this paper, we present a new Variational Lower Bound for IRL (VLB-IRL), which is derived under the framework of a probabilistic graphical model with an optimality node. Our method simultaneously learns the reward function and policy under the learned reward function by maximizing the lower bound, which is equivalent to minimizing the reverse Kullback-Leibler divergence between an approximated distribution of optimality given the reward function and the true distribution of optimality given trajectories. This leads to a new IRL method that learns a valid reward function such that the policy under the learned reward achieves expert-level performance on several known domains. Importantly, the method outperforms the existing state-of-the-art IRL algorithms on these domains by demonstrating better reward from the learned policy.

Detecting weak, systematic distribution shifts and quantitatively modeling individual, heterogeneous responses to policies or incentives have found increasing empirical applications in social and economic sciences. Given two probability distributions $P$ (null) and $Q$ (alternative), we study the problem of detecting weak distribution shift deviating from the null $P$ toward the alternative $Q$, where the level of deviation vanishes as a function of $n$, the sample size. We propose a model for weak distribution shifts via displacement interpolation between $P$ and $Q$, drawing from the optimal transport theory. We study a hypothesis testing procedure based on the Wasserstein distance, derive sharp conditions under which detection is possible, and provide the exact characterization of the asymptotic Type I and Type II errors at the detection boundary using empirical processes. We demonstrate how the proposed testing procedure works in modeling and detecting weak distribution shifts in real data sets using two empirical examples: distribution shifts in consumer spending after COVID-19, and heterogeneity in the published p-values of statistical tests in journals across different disciplines.

We study the role of regulatory inspections in a contract design problem in which a principal interacts separately with multiple agents. Each agent's hidden action includes a dimension that determines whether they undertake an extra costly step to adhere to safety protocols. The principal's objective is to use payments combined with a limited budget for random inspections to incentivize agents towards safety-compliant actions that maximize the principal's utility. We first focus on the single-agent setting with linear contracts and present an efficient algorithm that characterizes the optimal linear contract, which includes both payment and random inspection. We further investigate how the optimal contract changes as the inspection cost or the cost of adhering to safety protocols vary. Notably, we demonstrate that the agent's compensation increases if either of these costs escalates. However, while the probability of inspection decreases with rising inspection costs, it demonstrates nonmonotonic behavior as a function of the safety action costs. Lastly, we explore the multi-agent setting, where the principal's challenge is to determine the best distribution of inspection budgets among all agents. We propose an efficient approach based on dynamic programming to find an approximately optimal allocation of inspection budget across contracts. We also design a random sequential scheme to determine the inspector's assignments, ensuring each agent is inspected at most once and at the desired probability. Finally, we present a case study illustrating that a mere difference in the cost of inspection across various agents can drive the principal's decision to forego inspecting a significant fraction of them, concentrating its entire budget on those that are less costly to inspect.

Under model misspecification, it is known that Bayesian posteriors often do not properly quantify uncertainty about true or pseudo-true parameters. Even more fundamentally, misspecification leads to a lack of reproducibility in the sense that the same model will yield contradictory posteriors on independent data sets from the true distribution. To define a criterion for reproducible uncertainty quantification under misspecification, we consider the probability that two confidence sets constructed from independent data sets have nonempty overlap, and we establish a lower bound on this overlap probability that holds for any valid confidence sets. We prove that credible sets from the standard posterior can strongly violate this bound, particularly in high-dimensional settings (i.e., with dimension increasing with sample size), indicating that it is not internally coherent under misspecification. To improve reproducibility in an easy-to-use and widely applicable way, we propose to apply bagging to the Bayesian posterior ("BayesBag"'); that is, to use the average of posterior distributions conditioned on bootstrapped datasets. We motivate BayesBag from first principles based on Jeffrey conditionalization and show that the bagged posterior typically satisfies the overlap lower bound. Further, we prove a Bernstein--Von Mises theorem for the bagged posterior, establishing its asymptotic normal distribution. We demonstrate the benefits of BayesBag via simulation experiments and an application to crime rate prediction.

The framework of approximate differential privacy is considered, and augmented by introducing the notion of "the total variation of a (privacy-preserving) mechanism" (denoted by $\eta$-TV). With this refinement, an exact composition result is derived, and shown to be significantly tighter than the optimal bounds for differential privacy (which do not consider the total variation). Furthermore, it is shown that $(\varepsilon,\delta)$-DP with $\eta$-TV is closed under subsampling. The induced total variation of commonly used mechanisms are computed. Moreover, the notion of total variation of a mechanism is extended to the local privacy setting and privacy-utility tradeoffs are investigated. In particular, total variation distance and KL divergence are considered as utility functions and upper bounds are derived. Finally, the results are compared and connected to the (purely) locally differentially private setting.

Advancement in the field of machine learning is unavoidable, but something of major concern is preserving the privacy of the users whose data is being used for training these machine learning algorithms. Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner which enables one to collaborate and train a global model without sharing local data. But starting this learning process on each device in the right way, called ``model initialization" is critical. The choice of initialization methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems, etc. In this survey, we dive deeper into a comprehensive study of various ways of model initialization techniques in FL.Unlike other studies, our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios. We highlight how factors like client variability, data non-IIDness, model caliber, security considerations, and network restrictions influence FL model outcomes and propose how strategic initialization can address and potentially rectify many such challenges. The motivation behind this survey is to highlight that the right start can help overcome challenges like varying data quality, security issues, and network problems. Our insights provide a foundational base for experts looking to fully utilize FL, also while understanding the complexities of model initialization.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司