亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work studies the problem of high-dimensional data (referred to tensors) completion from partially observed samplings. We consider that a tensor is a superposition of multiple low-rank components. In particular, each component can be represented as multilinear connections over several latent factors and naturally mapped to a specific tensor network (TN) topology. In this paper, we propose a fundamental tensor decomposition (TD) framework: Multi-Tensor Network Representation (MTNR), which can be regarded as a linear combination of a range of TD models, e.g., CANDECOMP/PARAFAC (CP) decomposition, Tensor Train (TT), and Tensor Ring (TR). Specifically, MTNR represents a high-order tensor as the addition of multiple TN models, and the topology of each TN is automatically generated instead of manually pre-designed. For the optimization phase, an adaptive topology learning (ATL) algorithm is presented to obtain latent factors of each TN based on a rank incremental strategy and a projection error measurement strategy. In addition, we theoretically establish the fundamental multilinear operations for the tensors with TN representation, and reveal the structural transformation of MTNR to a single TN. Finally, MTNR is applied to a typical task, tensor completion, and two effective algorithms are proposed for the exact recovery of incomplete data based on the Alternating Least Squares (ALS) scheme and Alternating Direction Method of Multiplier (ADMM) framework. Extensive numerical experiments on synthetic data and real-world datasets demonstrate the effectiveness of MTNR compared with the start-of-the-art methods.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議(yi)。 Publisher:IFIP。 SIT:

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Most algorithms for representation learning and link prediction in relational data have been designed for static data. However, the data they are applied to usually evolves with time, such as friend graphs in social networks or user interactions with items in recommender systems. This is also the case for knowledge bases, which contain facts such as (US, has president, B. Obama, [2009-2017]) that are valid only at certain points in time. For the problem of link prediction under temporal constraints, i.e., answering queries such as (US, has president, ?, 2012), we propose a solution inspired by the canonical decomposition of tensors of order 4. We introduce new regularization schemes and present an extension of ComplEx (Trouillon et al., 2016) that achieves state-of-the-art performance. Additionally, we propose a new dataset for knowledge base completion constructed from Wikidata, larger than previous benchmarks by an order of magnitude, as a new reference for evaluating temporal and non-temporal link prediction methods.

Graph neural network (GNN) has shown superior performance in dealing with graphs, which has attracted considerable research attention recently. However, most of the existing GNN models are primarily designed for graphs in Euclidean spaces. Recent research has proven that the graph data exhibits non-Euclidean latent anatomy. Unfortunately, there was rarely study of GNN in non-Euclidean settings so far. To bridge this gap, in this paper, we study the GNN with attention mechanism in hyperbolic spaces at the first attempt. The research of hyperbolic GNN has some unique challenges: since the hyperbolic spaces are not vector spaces, the vector operations (e.g., vector addition, subtraction, and scalar multiplication) cannot be carried. To tackle this problem, we employ the gyrovector spaces, which provide an elegant algebraic formalism for hyperbolic geometry, to transform the features in a graph; and then we propose the hyperbolic proximity based attention mechanism to aggregate the features. Moreover, as mathematical operations in hyperbolic spaces could be more complicated than those in Euclidean spaces, we further devise a novel acceleration strategy using logarithmic and exponential mappings to improve the efficiency of our proposed model. The comprehensive experimental results on four real-world datasets demonstrate the performance of our proposed hyperbolic graph attention network model, by comparisons with other state-of-the-art baseline methods.

Many irregular domains such as social networks, financial transactions, neuron connections, and natural language structures are represented as graphs. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. However, in many of the applications, the underlying graph changes over time and existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs based on a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results that establish the connection between the proposed tensor approach and spectral convolution of tensors are developed. Numerical experiments on real datasets demonstrate the usefulness of the proposed method for an edge classification task on dynamic graphs.

Knowledge distillation is typically conducted by training a small model (the student) to mimic a large and cumbersome model (the teacher). The idea is to compress the knowledge from the teacher by using its output probabilities as soft-labels to optimize the student. However, when the teacher is considerably large, there is no guarantee that the internal knowledge of the teacher will be transferred into the student; even if the student closely matches the soft-labels, its internal representations may be considerably different. This internal mismatch can undermine the generalization capabilities originally intended to be transferred from the teacher to the student. In this paper, we propose to distill the internal representations of a large model such as BERT into a simplified version of it. We formulate two ways to distill such representations and various algorithms to conduct the distillation. We experiment with datasets from the GLUE benchmark and consistently show that adding knowledge distillation from internal representations is a more powerful method than only using soft-label distillation.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Network embedding has attracted an increasing attention over the past few years. As an effective approach to solve graph mining problems, network embedding aims to learn a low-dimensional feature vector representation for each node of a given network. The vast majority of existing network embedding algorithms, however, are only designed for unsigned networks, and the signed networks containing both positive and negative links, have pretty distinct properties from the unsigned counterpart. In this paper, we propose a deep network embedding model to learn the low-dimensional node vector representations with structural balance preservation for the signed networks. The model employs a semi-supervised stacked auto-encoder to reconstruct the adjacency connections of a given signed network. As the adjacency connections are overwhelmingly positive in the real-world signed networks, we impose a larger penalty to make the auto-encoder focus more on reconstructing the scarce negative links than the abundant positive links. In addition, to preserve the structural balance property of signed networks, we design the pairwise constraints to make the positively connected nodes much closer than the negatively connected nodes in the embedding space. Based on the network representations learned by the proposed model, we conduct link sign prediction and community detection in signed networks. Extensive experimental results in real-world datasets demonstrate the superiority of the proposed model over the state-of-the-art network embedding algorithms for graph representation learning in signed networks.

Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We propose to solve this task by using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.

For neural networks (NNs) with rectified linear unit (ReLU) or binary activation functions, we show that their training can be accomplished in a reduced parameter space. Specifically, the weights in each neuron can be trained on the unit sphere, as opposed to the entire space, and the threshold can be trained in a bounded interval, as opposed to the real line. We show that the NNs in the reduced parameter space are mathematically equivalent to the standard NNs with parameters in the whole space. The reduced parameter space shall facilitate the optimization procedure for the network training, as the search space becomes (much) smaller. We demonstrate the improved training performance using numerical examples.

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.

北京阿比特科技有限公司