In the analyses of cluster-randomized trials, mixed-model analysis of covariance (ANCOVA) is a standard approach for covariate adjustment and handling within-cluster correlations. However, when the normality, linearity, or the random-intercept assumption is violated, the validity and efficiency of the mixed-model ANCOVA estimators for estimating the average treatment effect remain unclear. Under the potential outcomes framework, we prove that the mixed-model ANCOVA estimators for the average treatment effect are consistent and asymptotically normal under arbitrary misspecification of its working model. If the probability of receiving treatment is 0.5 for each cluster, we further show that the model-based variance estimator under mixed-model ANCOVA1 (ANCOVA without treatment-covariate interactions) remains consistent, clarifying that the confidence interval given by standard software is asymptotically valid even under model misspecification. Beyond robustness, we discuss several insights on precision among classical methods for analyzing cluster-randomized trials, including the mixed-model ANCOVA, individual-level ANCOVA, and cluster-level ANCOVA estimators. These insights may inform the choice of methods in practice. Our analytical results and insights are illustrated via simulation studies and analyses of three cluster-randomized trials.
We propose a new reduced order modeling strategy for tackling parametrized Partial Differential Equations (PDEs) with linear constraints, in particular Darcy flow systems in which the constraint is given by mass conservation. Our approach employs classical neural network architectures and supervised learning, but it is constructed in such a way that the resulting Reduced Order Model (ROM) is guaranteed to satisfy the linear constraints exactly. The procedure is based on a splitting of the PDE solution into a particular solution satisfying the constraint and a homogenous solution. The homogeneous solution is approximated by mapping a suitable potential function, generated by a neural network model, onto the kernel of the constraint operator; for the particular solution, instead, we propose an efficient spanning tree algorithm. Starting from this paradigm, we present three approaches that follow this methodology, obtained by exploring different choices of the potential spaces: from empirical ones, derived via Proper Orthogonal Decomposition (POD), to more abstract ones based on differential complexes. All proposed approaches combine computational efficiency with rigorous mathematical interpretation, thus guaranteeing the explainability of the model outputs. To demonstrate the efficacy of the proposed strategies and to emphasize their advantages over vanilla black-box approaches, we present a series of numerical experiments on fluid flows in porous media, ranging from mixed-dimensional problems to nonlinear systems. This research lays the foundation for further exploration and development in the realm of model order reduction, potentially unlocking new capabilities and solutions in computational geosciences and beyond.
We present methodology for constructing pointwise confidence intervals for the cumulative distribution function and the quantiles of mixing distributions on the unit interval from binomial mixture distribution samples. No assumptions are made on the shape of the mixing distribution. The confidence intervals are constructed by inverting exact tests of composite null hypotheses regarding the mixing distribution. Our method may be applied to any deconvolution approach that produces test statistics whose distribution is stochastically monotone for stochastic increase of the mixing distribution. We propose a hierarchical Bayes approach, which uses finite Polya Trees for modelling the mixing distribution, that provides stable and accurate deconvolution estimates without the need for additional tuning parameters. Our main technical result establishes the stochastic monotonicity property of the test statistics produced by the hierarchical Bayes approach. Leveraging the need for the stochastic monotonicity property, we explicitly derive the smallest asymptotic confidence intervals that may be constructed using our methodology. Raising the question whether it is possible to construct smaller confidence intervals for the mixing distribution without making parametric assumptions on its shape.
When modeling scientific and industrial problems, geometries are typically modeled by explicit boundary representations obtained from computer-aided design software. Unfitted (also known as embedded or immersed) finite element methods offer a significant advantage in dealing with complex geometries, eliminating the need for generating unstructured body-fitted meshes. However, current unfitted finite elements on nonlinear geometries are restricted to implicit (possibly high-order) level set geometries. In this work, we introduce a novel automatic computational pipeline to approximate solutions of partial differential equations on domains defined by explicit nonlinear boundary representations. For the geometrical discretization, we propose a novel algorithm to generate quadratures for the bulk and surface integration on nonlinear polytopes required to compute all the terms in unfitted finite element methods. The algorithm relies on a nonlinear triangulation of the boundary, a kd-tree refinement of the surface cells that simplify the nonlinear intersections of surface and background cells to simple cases that are diffeomorphically equivalent to linear intersections, robust polynomial root-finding algorithms and surface parameterization techniques. We prove the correctness of the proposed algorithm. We have successfully applied this algorithm to simulate partial differential equations with unfitted finite elements on nonlinear domains described by computer-aided design models, demonstrating the robustness of the geometric algorithm and showing high-order accuracy of the overall method.
Refinement calculus provides a structured framework for the progressive and modular development of programs, ensuring their correctness throughout the refinement process. This paper introduces a refinement calculus tailored for quantum programs. To this end, we first study the partial correctness of nondeterministic programs within a quantum while language featuring prescription statements. Orthogonal projectors, which are equivalent to subspaces of the state Hilbert space, are taken as assertions for quantum states. In addition to the denotational semantics where a nondeterministic program is associated with a set of trace-nonincreasing super-operators, we also present their semantics in transforming a postcondition to the weakest liberal postconditions and, conversely, transforming a precondition to the strongest postconditions. Subsequently, refinement rules are introduced based on these dual semantics, offering a systematic approach to the incremental development of quantum programs applicable in various contexts. To illustrate the practical application of the refinement calculus, we examine examples such as the implementation of a $Z$-rotation gate, the repetition code, and the quantum-to-quantum Bernoulli factory. Furthermore, we present Quire, a Python-based interactive prototype tool that provides practical support to programmers engaged in the stepwise development of correct quantum programs.
Previous researchers conducting Just-In-Time (JIT) defect prediction tasks have primarily focused on the performance of individual pre-trained models, without exploring the relationship between different pre-trained models as backbones. In this study, we build six models: RoBERTaJIT, CodeBERTJIT, BARTJIT, PLBARTJIT, GPT2JIT, and CodeGPTJIT, each with a distinct pre-trained model as its backbone. We systematically explore the differences and connections between these models. Specifically, we investigate the performance of the models when using Commit code and Commit message as inputs, as well as the relationship between training efficiency and model distribution among these six models. Additionally, we conduct an ablation experiment to explore the sensitivity of each model to inputs. Furthermore, we investigate how the models perform in zero-shot and few-shot scenarios. Our findings indicate that each model based on different backbones shows improvements, and when the backbone's pre-training model is similar, the training resources that need to be consumed are much more closer. We also observe that Commit code plays a significant role in defect detection, and different pre-trained models demonstrate better defect detection ability with a balanced dataset under few-shot scenarios. These results provide new insights for optimizing JIT defect prediction tasks using pre-trained models and highlight the factors that require more attention when constructing such models. Additionally, CodeGPTJIT and GPT2JIT achieved better performance than DeepJIT and CC2Vec on the two datasets respectively under 2000 training samples. These findings emphasize the effectiveness of transformer-based pre-trained models in JIT defect prediction tasks, especially in scenarios with limited training data.
We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly logconcave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.
Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.
Consider a regression or some regression-type model for a certain response variable where the linear predictor includes an ordered factor among the explanatory variables. The inclusion of a factor of this type can take place is a few different ways, discussed in the pertaining literature. The present contribution proposes a different way of tackling this problem, by constructing a numeric variable in an alternative way with respect to the current methodology. The proposed techniques appears to retain the data fitting capability of the existing methodology, but with a simpler interpretation of the model components.
Navigating the challenges of data-driven speech processing, one of the primary hurdles is accessing reliable pathological speech data. While public datasets appear to offer solutions, they come with inherent risks of potential unintended exposure of patient health information via re-identification attacks. Using a comprehensive real-world pathological speech corpus, with over n=3,800 test subjects spanning various age groups and speech disorders, we employed a deep-learning-driven automatic speaker verification (ASV) approach. This resulted in a notable mean equal error rate (EER) of 0.89% with a standard deviation of 0.06%, outstripping traditional benchmarks. Our comprehensive assessments demonstrate that pathological speech overall faces heightened privacy breach risks compared to healthy speech. Specifically, adults with dysphonia are at heightened re-identification risks, whereas conditions like dysarthria yield results comparable to those of healthy speakers. Crucially, speech intelligibility does not influence the ASV system's performance metrics. In pediatric cases, particularly those with cleft lip and palate, the recording environment plays a decisive role in re-identification. Merging data across pathological types led to a marked EER decrease, suggesting the potential benefits of pathological diversity in ASV, accompanied by a logarithmic boost in ASV effectiveness. In essence, this research sheds light on the dynamics between pathological speech and speaker verification, emphasizing its crucial role in safeguarding patient confidentiality in our increasingly digitized healthcare era.
An enriched hybrid high-order method is designed for the Stokes equations of fluid flow and is fully applicable to generic curved meshes. Minimal regularity requirements of the enrichment spaces are given, and an abstract error analysis of the scheme is provided. The method achieves consistency in the enrichment space and is proven to converge optimally in energy error. The scheme is applied to 2D flow around circular cylinders, for which the local behaviour of the velocity and pressure fields are known. By enriching the local spaces with these solutions, superior numerical results near the submerged cylinders are achieved.