We show that a relatively simple reasoning using von Neumann entropy inequalities yields a robust proof of the quantum Singleton bound for quantum error-correcting codes (QECC). For entanglement-assisted quantum error-correcting codes (EAQECC) and catalytic codes (CQECC), a type of generalized quantum Singleton bound [Brun et al., IEEE Trans. Inf. Theory 60(6):3073--3089 (2014)] was believed to hold for many years until recently one of us found a counterexample [MG, Phys. Rev. A 103, 020601 (2021)]. Here, we rectify this state of affairs by proving the correct generalized quantum Singleton bound, extending the above-mentioned proof method for QECC; we also prove information-theoretically tight bounds on the entanglement-communication tradeoff for EAQECC. All of the bounds relate block length $n$ and code length $k$ for given minimum distance $d$ and we show that they are robust, in the sense that they hold with small perturbations for codes which only correct most of the erasure errors of less than $d$ letters. In contrast to the classical case, the bounds take on qualitatively different forms depending on whether the minimum distance is smaller or larger than half the block length. We also provide a propagation rule: any pure QECC yields an EAQECC with the same distance and dimension, but of shorter block length.
In this paper, we develop an Isabelle/HOL library of order-theoretic fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often with only antisymmetry or attractivity, a mild condition implied by either antisymmetry or transitivity. In particular, we generalize various theorems ensuring the existence of a quasi-fixed point of monotone maps over complete relations, and show that the set of (quasi-)fixed points is itself complete. This result generalizes and strengthens theorems of Knaster-Tarski, Bourbaki-Witt, Kleene, Markowsky, Pataraia, Mashburn, Bhatta-George, and Stouti-Maaden.
In this paper, we provide a framework for constructing entanglement-assisted quantum error-correcting codes (EAQECCs) from classical additive codes over a finite commutative local Frobenius ring. We derive a formula for the minimum number of entanglement qudits required to construct an EAQECC from a linear code over the ring $\mathbb{Z}_{p^s}$. This is used to obtain an exact expression for the minimum number of entanglement qudits required to construct an EAQECC from an additive code over a Galois ring, which significantly extends known results for EAQECCs over finite fields.
We propose quantum subroutines for the simplex method that avoid classical computation of the basis inverse. We show how to quantize all steps of the simplex algorithm, including checking optimality, unboundedness, and identifying a pivot (i.e., pricing the columns and performing the ratio test) according to Dantzig's rule or the steepest edge rule. The quantized subroutines obtain a polynomial speedup in the dimension of the problem, but have worse dependence on other numerical parameters. For example, for a problem with $m$ constraints, $n$ variables, at most $d_c$ nonzero elements per column of the costraint matrix, at most $d$ nonzero elements per column or row of the basis, basis condition number $\kappa$, and optimality tolerance $\epsilon$, pricing can be performed in $\tilde{O}(\frac{1}{\epsilon}\kappa d \sqrt{n}(d_c n + d m))$ time, where the $\tilde{O}$ notation hides polylogarithmic factors; classically, pricing requires $O(d_c^{0.7} m^{1.9} + m^{2 + o(1)} + d_c n)$ time in the worst case using the fastest known algorithm for sparse matrix multiplication. For well-conditioned sparse problems the quantum subroutines scale better in $m$ and $n$, and may therefore have an advantage for very large problems. The running time of the quantum subroutines can be improved if the constraint matrix admits an efficient algorithmic description, or if quantum RAM is available.
Partial differential equations (PDEs) with spatially-varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem -- leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend the walk on spheres (WoS) algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired by null-scattering yields unbiased Monte Carlo estimators for a large class of 2nd-order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations.
In this paper, we find a necessary and sufficient condition for multi-twisted Reed-Solomon codes to be MDS. Further, we obtain necessary conditions for the existence of multi-twisted RS codes with zero and one-dimensional hulls.
We present a logical system CFP (Concurrent Fixed Point Logic) from whose proofs one can extract nondeterministic and concurrent programs that are provably total and correct with respect to the proven formula. CFP is an intuitionistic first-order logic with inductive and coinductive definitions extended by two propositional operators, A || B (restriction, a strengthening of the implication B -> A) and $\ddownarrow(A)$ (total concurrency). The target of the extraction is a lambda calculus with constructors and recursion extended by a constructor Amb (for McCarthy's amb) which is interpreted operationally as globally angelic choice. The correctness of extracted programs is proven via an intermediate domain-theoretic denotational semantics. We demonstrate the usefulness of our system by extracting a concurrent program that translates infinite Gray code into the signed digit representation. A noteworthy feature of our system is that the proof rules for restriction and concurrency involve variants of the classical law of excluded middle that would not be interpretable computationally without Amb.
Automorphism ensemble (AE) decoding for polar codes was proposed by decoding permuted codewords with successive cancellation (SC) decoders in parallel and hence has lower latency compared to that of successive cancellation list (SCL) decoding. However, some automorphisms are SC-invariant, thus are redundant in AE decoding. In this paper, we find a necessary and sufficient condition related to the block lower-triangular structure of transformation matrices to identify SC-invariant automorphisms. Furthermore, we provide an algorithm to determine the complete SC-invariant affine automorphisms under a specific polar code construction.
In this work, we propose an interesting method that aims to approximate an activation function over some domain by polynomials of the presupposing low degree. The main idea behind this method can be seen as an extension of the ordinary least square method and includes the gradient of activation function into the cost function to minimize.
In this work, two fast multipole boundary element formulations for the linear time-harmonic acoustic analysis of finite periodic structures are presented. Finite periodic structures consist of a bounded number of unit cell replications in one or more directions of periodicity. Such structures can be designed to efficiently control and manipulate sound waves and are referred to as acoustic metamaterials or sonic crystals. Our methods subdivide the geometry into boxes which correspond to the unit cell. A boundary element discretization is applied and interactions between well separated boxes are approximated by a fast multipole expansion. Due to the periodicity of the underlying geometry, certain operators of the expansion become block Toeplitz matrices. This allows to express matrix-vector products as circular convolutions which significantly reduces the computational effort and the overall memory requirements. The efficiency of the presented techniques is shown based on an acoustic scattering problem. In addition, a study on the design of sound barriers is presented where the performance of a wall-like sound barrier is compared to the performance of two sonic crystal sound barriers.
An interactive error correcting code ($\mathsf{iECC}$) is an interactive protocol with the guarantee that the receiver can correctly determine the sender's message, even in the presence of noise. This generalizes the concept of an error correcting code ($\mathsf{ECC}$), which is a non-interactive $\mathsf{iECC}$ that is known to have erasure resilience capped at $\frac12$. The work of \cite{GuptaTZ21} constructed the first $\mathsf{iECC}$ resilient to $> \frac12$ adversarial erasures. However, their $\mathsf{iECC}$ has communication complexity quadratic in the message size. In our work, we construct the first positive rate $\mathsf{iECC}$ resilient to $> \frac12$ adversarial erasures. For any $\epsilon > 0$, our $\mathsf{iECC}$ is resilient to $\frac6{11} - \epsilon$ adversarial erasures and has size $O_\epsilon(n)$.