In this paper, we find a necessary and sufficient condition for multi-twisted Reed-Solomon codes to be MDS. Further, we obtain necessary conditions for the existence of multi-twisted RS codes with zero and one-dimensional hulls.
The aim in packing problems is to decide if a given set of pieces can be placed inside a given container. A packing problem is defined by the types of pieces and containers to be handled, and the motions that are allowed to move the pieces. The pieces must be placed so that in the resulting placement, they are pairwise interior-disjoint. We establish a framework which enables us to show that for many combinations of allowed pieces, containers and motions, the resulting problem is $\exists \mathbb{R}$-complete. This means that the problem is equivalent (under polynomial time reductions) to deciding whether a given system of polynomial equations and inequalities with integer coefficients has a real solution. We consider packing problems where only translations are allowed as the motions, and problems where arbitrary rigid motions are allowed, i.e., both translations and rotations. When rotations are allowed, we show that it is an $\exists \mathbb{R}$-complete problem to decide if a set of convex polygons, each of which has at most $7$ corners, can be packed into a square. Restricted to translations, we show that the following problems are $\exists \mathbb{R}$-complete: (i) pieces bounded by segments and hyperbolic curves to be packed in a square, and (ii) convex polygons to be packed in a container bounded by segments and hyperbolic curves.
Continuous-time (CT) models have shown an improved sample efficiency during learning and enable ODE analysis methods for enhanced interpretability compared to discrete-time (DT) models. Even with numerous recent developments, the multifaceted CT state-space model identification problem remains to be solved in full, considering common experimental aspects such as the presence of external inputs, measurement noise, and latent states. This paper presents a novel estimation method that includes these aspects and that is able to obtain state-of-the-art results on multiple benchmarks where a small fully connected neural network describes the CT dynamics. The novel estimation method called the subspace encoder approach ascertains these results by altering the well-known simulation loss to include short subsections instead, by using an encoder function and a state-derivative normalization term to obtain a computationally feasible and stable optimization problem. This encoder function estimates the initial states of each considered subsection. We prove that the existence of the encoder function has the necessary condition of a Lipschitz continuous state-derivative utilizing established properties of ODEs.
Thanks to the ubiquitousness of Wi-Fi access points and devices, Wi-Fi sensing enables transformative applications in remote health care, security, and surveillance. Existing work has explored the usage of machine learning on channel state information (CSI) computed from Wi-Fi packets to classify events of interest. However, most of these algorithms require a significant amount of data collection, as well as extensive computational power for additional CSI feature extraction. Moreover, the majority of these models suffer from poor accuracy when tested in a new/untrained environment. In this paper, we propose ReWiS, a novel framework for robust and environment-independent Wi-Fi sensing. The key innovation of ReWiS is to leverage few-shot learning (FSL) as the inference engine, which (i) reduces the need for extensive data collection and application-specific feature extraction; (ii) can rapidly generalize to new tasks by leveraging only a few new samples. We prototype ReWiS using off-the-shelf Wi-Fi equipment and showcase its performance by considering a compelling use case of human activity recognition. Thus, we perform an extensive data collection campaign in three different propagation environments with two human subjects. We evaluate the impact of each diversity component on the performance and compare ReWiS with a traditional convolutional neural network (CNN) approach. Experimental results show that ReWiS improves the performance by about 40% with respect to existing single-antenna low-resolution approaches. Moreover, when compared to a CNN-based approach, ReWiS shows a 35% more accuracy and less than 10% drop in accuracy when tested in different environments, while the CNN drops by more than 45%.
This paper describes an energy-preserving and globally time-reversible code for weakly compressible smoothed particle hydrodynamics (SPH). We do not add any additional dynamics to the Monaghan's original SPH scheme at the level of ordinary differential equation, but we show how to discretize the equations by using a corrected expression for density and by invoking a symplectic integrator. Moreover, to achieve the global-in-time reversibility, we have to correct the initial state, implement a conservative fluid-wall interaction, and use the fixed-point arithmetic. Although the numerical scheme is reversible globally in time (solvable backwards in time while recovering the initial conditions), we observe thermalization of the particle velocities and growth of the Boltzmann entropy. In other words, when we do not see all the possible details, as in the Boltzmann entropy, which depends only on the one-particle distribution function, we observe the emergence of the second law of thermodynamics (irreversible behavior) from purely reversible dynamics.
Remote-sensing (RS) Change Detection (CD) aims to detect "changes of interest" from co-registered bi-temporal images. The performance of existing deep supervised CD methods is attributed to the large amounts of annotated data used to train the networks. However, annotating large amounts of remote sensing images is labor-intensive and expensive, particularly with bi-temporal images, as it requires pixel-wise comparisons by a human expert. On the other hand, we often have access to unlimited unlabeled multi-temporal RS imagery thanks to ever-increasing earth observation programs. In this paper, we propose a simple yet effective way to leverage the information from unlabeled bi-temporal images to improve the performance of CD approaches. More specifically, we propose a semi-supervised CD model in which we formulate an unsupervised CD loss in addition to the supervised Cross-Entropy (CE) loss by constraining the output change probability map of a given unlabeled bi-temporal image pair to be consistent under the small random perturbations applied on the deep feature difference map that is obtained by subtracting their latent feature representations. Experiments conducted on two publicly available CD datasets show that the proposed semi-supervised CD method can reach closer to the performance of supervised CD even with access to as little as 10% of the annotated training data. Code available at //github.com/wgcban/SemiCD
In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.
A novel topological-data-analytical (TDA) method is proposed to distinguish, from noise, small holes surrounded by high-density regions of a probability density function whose mass is concentrated near a manifold (or more generally, a CW complex) embedded in a high-dimensional Euclidean space. The proposed method is robust against additive noise and outliers. In particular, sample points are allowed to be perturbed away from the manifold. Traditional TDA tools, like those based on the distance filtration, often struggle to distinguish small features from noise, because of their short persistence. An alternative filtration, called Robust Density-Aware Distance (RDAD) filtration, is proposed to prolong the persistence of small holes surrounded by high-density regions. This is achieved by weighting the distance function by the density in the sense of Bell et al. Distance-to-measure is incorporated to enhance stability and mitigate noise due to the density estimation. The utility of the proposed filtration in identifying small holes, as well as its robustness against noise, are illustrated through an analytical example and extensive numerical experiments. Basic mathematical properties of the proposed filtration are proven.
Traditional multi-task learning (MTL) methods use dense networks that use the same set of shared weights across several different tasks. This often creates interference where two or more tasks compete to pull model parameters in different directions. In this work, we study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning by specializing some weights for learning shared representations and using the others for learning task-specific information. To this end, we devise task-aware gating functions to route examples from different tasks to specialized experts which share subsets of network weights conditioned on the task. This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model. We demonstrate such sparse networks to improve multi-task learning along three key dimensions: (i) transfer to low-resource tasks from related tasks in the training mixture; (ii) sample-efficient generalization to tasks not seen during training by making use of task-aware routing from seen related tasks; (iii) robustness to the addition of unrelated tasks by avoiding catastrophic forgetting of existing tasks.
We study a class of enriched unfitted finite element or generalized finite element methods (GFEM) to solve a larger class of interface problems, that is, 1D elliptic interface problems with discontinuous solutions, including those having implicit or Robin-type interface jump conditions. The major challenge of GFEM development is to construct enrichment functions that capture the imposed discontinuity of the solution while keeping the condition number from fast growth. The linear stable generalized finite element method (SGFEM) was recently developed using one enrichment function. We generalized it to an arbitrary degree using two simple discontinuous one-sided enrichment functions. Optimal order convergence in the $L^2$ and broken $H^1$-norms are established. So is the optimal order convergence at all nodes. To prove the efficiency of the SGFEM, the enriched linear, quadratic, and cubic elements are applied to a multi-layer wall model for drug-eluting stents in which zero-flux jump conditions and implicit concentration interface conditions are both present.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.