亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning has brought significant advances in cybersecurity, particularly in the development of Intrusion Detection Systems (IDS). These improvements are mainly attributed to the ability of machine learning algorithms to identify complex relationships between features and effectively generalize to unseen data. Deep neural networks, in particular, contributed to this progress by enabling the analysis of large amounts of training data, significantly enhancing detection performance. However, machine learning models remain vulnerable to adversarial attacks, where carefully crafted input data can mislead the model into making incorrect predictions. While adversarial threats in unstructured data, such as images and text, have been extensively studied, their impact on structured data like network traffic is less explored. This survey aims to address this gap by providing a comprehensive review of machine learning-based Network Intrusion Detection Systems (NIDS) and thoroughly analyzing their susceptibility to adversarial attacks. We critically examine existing research in NIDS, highlighting key trends, strengths, and limitations, while identifying areas that require further exploration. Additionally, we discuss emerging challenges in the field and offer insights for the development of more robust and resilient NIDS. In summary, this paper enhances the understanding of adversarial attacks and defenses in NIDS and guide future research in improving the robustness of machine learning models in cybersecurity applications.

相關內容

機器學(xue)習(xi)(xi)(Machine Learning)是一個研(yan)(yan)(yan)究(jiu)計算學(xue)習(xi)(xi)方(fang)(fang)(fang)(fang)法(fa)的(de)(de)(de)國(guo)際論(lun)壇(tan)。該(gai)雜志發表文(wen)(wen)(wen)章,報告(gao)廣泛(fan)的(de)(de)(de)學(xue)習(xi)(xi)方(fang)(fang)(fang)(fang)法(fa)應(ying)用于各種(zhong)學(xue)習(xi)(xi)問(wen)(wen)(wen)題的(de)(de)(de)實(shi)質性(xing)結果。該(gai)雜志的(de)(de)(de)特色論(lun)文(wen)(wen)(wen)描(miao)述研(yan)(yan)(yan)究(jiu)的(de)(de)(de)問(wen)(wen)(wen)題和方(fang)(fang)(fang)(fang)法(fa),應(ying)用研(yan)(yan)(yan)究(jiu)和研(yan)(yan)(yan)究(jiu)方(fang)(fang)(fang)(fang)法(fa)的(de)(de)(de)問(wen)(wen)(wen)題。有關(guan)學(xue)習(xi)(xi)問(wen)(wen)(wen)題或(huo)方(fang)(fang)(fang)(fang)法(fa)的(de)(de)(de)論(lun)文(wen)(wen)(wen)通過實(shi)證研(yan)(yan)(yan)究(jiu)、理(li)論(lun)分析(xi)或(huo)與心理(li)現象的(de)(de)(de)比較提供了(le)(le)堅實(shi)的(de)(de)(de)支(zhi)(zhi)持(chi)(chi)。應(ying)用論(lun)文(wen)(wen)(wen)展示了(le)(le)如何應(ying)用學(xue)習(xi)(xi)方(fang)(fang)(fang)(fang)法(fa)來解決重要的(de)(de)(de)應(ying)用問(wen)(wen)(wen)題。研(yan)(yan)(yan)究(jiu)方(fang)(fang)(fang)(fang)法(fa)論(lun)文(wen)(wen)(wen)改進了(le)(le)機器學(xue)習(xi)(xi)的(de)(de)(de)研(yan)(yan)(yan)究(jiu)方(fang)(fang)(fang)(fang)法(fa)。所有的(de)(de)(de)論(lun)文(wen)(wen)(wen)都以其(qi)他研(yan)(yan)(yan)究(jiu)人員(yuan)可(ke)以驗證或(huo)復制的(de)(de)(de)方(fang)(fang)(fang)(fang)式描(miao)述了(le)(le)支(zhi)(zhi)持(chi)(chi)證據。論(lun)文(wen)(wen)(wen)還(huan)詳細說明了(le)(le)學(xue)習(xi)(xi)的(de)(de)(de)組成部分,并討論(lun)了(le)(le)關(guan)于知(zhi)識表示和性(xing)能任務的(de)(de)(de)假(jia)設(she)。 官網地址:

Offline Reinforcement Learning (RL) has emerged as a powerful alternative to imitation learning for behavior modeling in various domains, particularly in complex navigation tasks. An existing challenge with Offline RL is the signal-to-noise ratio, i.e. how to mitigate incorrect policy updates due to errors in value estimates. Towards this, multiple works have demonstrated the advantage of hierarchical offline RL methods, which decouples high-level path planning from low-level path following. In this work, we present a novel hierarchical transformer-based approach leveraging a learned quantizer of the space. This quantization enables the training of a simpler zone-conditioned low-level policy and simplifies planning, which is reduced to discrete autoregressive prediction. Among other benefits, zone-level reasoning in planning enables explicit trajectory stitching rather than implicit stitching based on noisy value function estimates. By combining this transformer-based planner with recent advancements in offline RL, our proposed approach achieves state-of-the-art results in complex long-distance navigation environments.

Federated Learning has emerged as a leading approach for decentralized machine learning, enabling multiple clients to collaboratively train a shared model without exchanging private data. While FL enhances data privacy, it remains vulnerable to inference attacks, such as gradient inversion and membership inference, during both training and inference phases. Homomorphic Encryption provides a promising solution by encrypting model updates to protect against such attacks, but it introduces substantial communication overhead, slowing down training and increasing computational costs. To address these challenges, we propose QuanCrypt-FL, a novel algorithm that combines low-bit quantization and pruning techniques to enhance protection against attacks while significantly reducing computational costs during training. Further, we propose and implement mean-based clipping to mitigate quantization overflow or errors. By integrating these methods, QuanCrypt-FL creates a communication-efficient FL framework that ensures privacy protection with minimal impact on model accuracy, thereby improving both computational efficiency and attack resilience. We validate our approach on MNIST, CIFAR-10, and CIFAR-100 datasets, demonstrating superior performance compared to state-of-the-art methods. QuanCrypt-FL consistently outperforms existing method and matches Vanilla-FL in terms of accuracy across varying client. Further, QuanCrypt-FL achieves up to 9x faster encryption, 16x faster decryption, and 1.5x faster inference compared to BatchCrypt, with training time reduced by up to 3x.

Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a MUN is deployed in unknown environments. To this end, this paper investigates distributed user connectivity maximization problem in a MUN with generalization to arbitrary UDs. Specifically, the problem is first formulated into a time-coupled combinatorial nonlinear non-convex optimization with arbitrary underlying UDs. To make the optimization tractable, a multi-agent CNN-enhanced deep Q learning (MA-CDQL) algorithm is proposed. The algorithm integrates a ResNet-based CNN to the policy network to analyze the input UD in real time and obtain optimal decisions based on the extracted high-level UD features. To improve the learning efficiency and avoid local optimums, a heatmap algorithm is developed to transform the raw UD to a continuous density map. The map will be part of the true input to the policy network. Simulations are conducted to demonstrate the efficacy of UD heatmaps and the proposed algorithm in maximizing user connectivity as compared to K-means methods.

Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models by capturing causal relationships among variables. The emergence of generative Large Language Models (LLMs) has significantly impacted various NLP domains, particularly through their advanced reasoning capabilities. This survey focuses on evaluating and improving LLMs from a causal view in the following areas: understanding and improving the LLMs' reasoning capacity, addressing fairness and safety issues in LLMs, complementing LLMs with explanations, and handling multimodality. Meanwhile, LLMs' strong reasoning capacities can in turn contribute to the field of causal inference by aiding causal relationship discovery and causal effect estimations. This review explores the interplay between causal inference frameworks and LLMs from both perspectives, emphasizing their collective potential to further the development of more advanced and equitable artificial intelligence systems.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.

北京阿比特科技有限公司