We introduce a new second-order inertial optimization method for machine learning called INNA. It exploits the geometry of the loss function while only requiring stochastic approximations of the function values and the generalized gradients. This makes INNA fully implementable and adapted to large-scale optimization problems such as the training of deep neural networks. The algorithm combines both gradient-descent and Newton-like behaviors as well as inertia. We prove the convergence of INNA for most deep learning problems. To do so, we provide a well-suited framework to analyze deep learning loss functions involving tame optimization in which we study a continuous dynamical system together with its discrete stochastic approximations. We prove sublinear convergence for the continuous-time differential inclusion which underlies our algorithm. Additionally, we also show how standard optimization mini-batch methods applied to non-smooth non-convex problems can yield a certain type of spurious stationary points never discussed before. We address this issue by providing a theoretical framework around the new idea of $D$-criticality; we then give a simple asymptotic analysis of INNA. Our algorithm allows for using an aggressive learning rate of $o(1/\log k)$. From an empirical viewpoint, we show that INNA returns competitive results with respect to state of the art (stochastic gradient descent, ADAGRAD, ADAM) on popular deep learning benchmark problems.
Deep reinforcement learning (RL) algorithms can learn complex policies to optimize agent operation over time. RL algorithms have shown promising results in solving complicated problems in recent years. However, their application on real-world physical systems remains limited. Despite the advancements in RL algorithms, the industries often prefer traditional control strategies. Traditional methods are simple, computationally efficient and easy to adjust. In this paper, we first propose a new Q-learning algorithm for continuous action space, which can bridge the control and RL algorithms and bring us the best of both worlds. Our method can learn complex policies to achieve long-term goals and at the same time it can be easily adjusted to address short-term requirements without retraining. Next, we present an approximation of our algorithm which can be applied to address short-term requirements of any pre-trained RL algorithm. The case studies demonstrate that both our proposed method as well as its practical approximation can achieve short-term and long-term goals without complex reward functions.
In online learning from non-stationary data streams, it is necessary to learn robustly to outliers and to adapt quickly to changes in the underlying data generating mechanism. In this paper, we refer to the former attribute of online learning algorithms as robustness and to the latter as adaptivity. There is an obvious tradeoff between the two attributes. It is a fundamental issue to quantify and evaluate the tradeoff because it provides important information on the data generating mechanism. However, no previous work has considered the tradeoff quantitatively. We propose a novel algorithm called the stochastic approximation-based robustness-adaptivity algorithm (SRA) to evaluate the tradeoff. The key idea of SRA is to update parameters of distribution or sufficient statistics with the biased stochastic approximation scheme, while dropping data points with large values of the stochastic update. We address the relation between the two parameters: one is the step size of the stochastic approximation, and the other is the threshold parameter of the norm of the stochastic update. The former controls the adaptivity and the latter does the robustness. We give a theoretical analysis for the non-asymptotic convergence of SRA in the presence of outliers, which depends on both the step size and threshold parameter. Because SRA is formulated on the majorization-minimization principle, it is a general algorithm that includes many algorithms, such as the online EM algorithm and stochastic gradient descent. Empirical experiments for both synthetic and real datasets demonstrated that SRA was superior to previous methods.
Cooperative multi-agent reinforcement learning is a decentralized paradigm in sequential decision making where agents distributed over a network iteratively collaborate with neighbors to maximize global (network-wide) notions of rewards. Exact computations typically involve a complexity that scales exponentially with the number of agents. To address this curse of dimensionality, we design a scalable algorithm based on the Natural Policy Gradient framework that uses local information and only requires agents to communicate with neighbors within a certain range. Under standard assumptions on the spatial decay of correlations for the transition dynamics of the underlying Markov process and the localized learning policy, we show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity, incurring a localization error that does not depend on the number of agents and converges to zero exponentially fast as a function of the range of communication.
We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Many reinforcement-learning researchers treat the reward function as a part of the environment, meaning that the agent can only know the reward of a state if it encounters that state in a trial run. However, we argue that this is an unnecessary limitation and instead, the reward function should be provided to the learning algorithm. The advantage is that the algorithm can then use the reward function to check the reward for states that the agent hasn't even encountered yet. In addition, the algorithm can simultaneously learn policies for multiple reward functions. For each state, the algorithm would calculate the reward using each of the reward functions and add the rewards to its experience replay dataset. The Hindsight Experience Replay algorithm developed by Andrychowicz et al. (2017) does just this, and learns to generalize across a distribution of sparse, goal-based rewards. We extend this algorithm to linearly-weighted, multi-objective rewards and learn a single policy that can generalize across all linear combinations of the multi-objective reward. Whereas other multi-objective algorithms teach the Q-function to generalize across the reward weights, our algorithm enables the policy to generalize, and can thus be used with continuous actions.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.
Meta-learning is a powerful tool that builds on multi-task learning to learn how to quickly adapt a model to new tasks. In the context of reinforcement learning, meta-learning algorithms can acquire reinforcement learning procedures to solve new problems more efficiently by meta-learning prior tasks. The performance of meta-learning algorithms critically depends on the tasks available for meta-training: in the same way that supervised learning algorithms generalize best to test points drawn from the same distribution as the training points, meta-learning methods generalize best to tasks from the same distribution as the meta-training tasks. In effect, meta-reinforcement learning offloads the design burden from algorithm design to task design. If we can automate the process of task design as well, we can devise a meta-learning algorithm that is truly automated. In this work, we take a step in this direction, proposing a family of unsupervised meta-learning algorithms for reinforcement learning. We describe a general recipe for unsupervised meta-reinforcement learning, and describe an effective instantiation of this approach based on a recently proposed unsupervised exploration technique and model-agnostic meta-learning. We also discuss practical and conceptual considerations for developing unsupervised meta-learning methods. Our experimental results demonstrate that unsupervised meta-reinforcement learning effectively acquires accelerated reinforcement learning procedures without the need for manual task design, significantly exceeds the performance of learning from scratch, and even matches performance of meta-learning methods that use hand-specified task distributions.
We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
This paper proposes a Reinforcement Learning (RL) algorithm to synthesize policies for a Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the property into a Limit Deterministic Buchi Automaton (LDBA), then construct a product MDP between the automaton and the original MDP. A reward function is then assigned to the states of the product automaton, according to accepting conditions of the LDBA. With this reward function, our algorithm synthesizes a policy that satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.