亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce novel Markov chain Monte Carlo (MCMC) algorithms based on numerical approximations of piecewise-deterministic Markov processes obtained with the framework of splitting schemes. We present unadjusted as well as adjusted algorithms, for which the asymptotic bias due to the discretisation error is removed applying a non-reversible Metropolis-Hastings filter. In a general framework we demonstrate that the unadjusted schemes have weak error of second order in the step size, while typically maintaining a computational cost of only one gradient evaluation of the negative log-target function per iteration. Focusing then on unadjusted schemes based on the Bouncy Particle and Zig-Zag samplers, we provide conditions ensuring geometric ergodicity and consider the expansion of the invariant measure in terms of the step size. We analyse the dependence of the leading term in this expansion on the refreshment rate and on the structure of the splitting scheme, giving a guideline on which structure is best. Finally, we illustrate the competitiveness of our samplers with numerical experiments on a Bayesian imaging inverse problem and a system of interacting particles.

相關內容

Neufeld and Wu (arXiv:2310.12545) developed a multilevel Picard (MLP) algorithm which can approximately solve general semilinear parabolic PDEs with gradient-dependent nonlinearities, allowing also for coefficient functions of the corresponding PDE to be non-constant. By introducing a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula and identifying the first and second component of the unique fixed-point of the SFPE with the unique viscosity solution of the PDE and its gradient, they proved convergence of their algorithm. However, it remained an open question whether the proposed MLP schema in arXiv:2310.12545 does not suffer from the curse of dimensionality. In this paper, we prove that the MLP algorithm in arXiv:2310.12545 indeed can overcome the curse of dimensionality, i.e. that its computational complexity only grows polynomially in the dimension $d\in \mathbb{N}$ and the reciprocal of the accuracy $\varepsilon$, under some suitable assumptions on the nonlinear part of the corresponding PDE.

Current approaches to generic segmentation start by creating a hierarchy of nested image partitions and then specifying a segmentation from it. Our first contribution is to describe several ways, most of them new, for specifying segmentations using the hierarchy elements. Then, we consider the best hierarchy-induced segmentation specified by a limited number of hierarchy elements. We focus on a common quality measure for binary segmentations, the Jaccard index (also known as IoU). Optimizing the Jaccard index is highly non-trivial, and yet we propose an efficient approach for doing exactly that. This way we get algorithm-independent upper bounds on the quality of any segmentation created from the hierarchy. We found that the obtainable segmentation quality varies significantly depending on the way that the segments are specified by the hierarchy elements, and that representing a segmentation with only a few hierarchy elements is often possible. (Code is available).

We introduce a family of identities that express general linear non-unitary evolution operators as a linear combination of unitary evolution operators, each solving a Hamiltonian simulation problem. This formulation can exponentially enhance the accuracy of the recently introduced linear combination of Hamiltonian simulation (LCHS) method [An, Liu, and Lin, Physical Review Letters, 2023]. For the first time, this approach enables quantum algorithms to solve linear differential equations with both optimal state preparation cost and near-optimal scaling in matrix queries on all parameters.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

Recent work has proposed solving the k-means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k-means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms and there has been no quantum-tailored coreset technique which is designed to boost the accuracy of quantum algorithms. In this work, we propose solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customised coreset method, the Contour coreset, which has been formulated with specific focus on quantum algorithms. Extensive simulations with synthetic and real-life data demonstrated that our VQE+Contour Coreset approach outperforms existing QAOA+Coreset k-means clustering approaches with higher accuracy and lower standard deviation. Our work has shown that quantum tailored coreset techniques has the potential to significantly boost the performance of quantum algorithms when compared to using generic off-the-shelf coreset techniques.

We introduce a new Projected Rayleigh Quotient Iteration aimed at improving the convergence behaviour of classic Rayleigh Quotient iteration (RQI) by incorporating approximate information about the target eigenvector at each step. While classic RQI exhibits local cubic convergence for Hermitian matrices, its global behaviour can be unpredictable, whereby it may converge to an eigenvalue far away from the target, even when started with accurate initial conditions. This problem is exacerbated when the eigenvalues are closely spaced. The key idea of the new algorithm is at each step to add a complex-valued projection to the original matrix (that depends on the current eigenvector approximation), such that the unwanted eigenvalues are lifted into the complex plane while the target stays close to the real line, thereby increasing the spacing between the target eigenvalue and the rest of the spectrum. Making better use of the eigenvector approximation leads to more robust convergence behaviour and the new method converges reliably to the correct target eigenpair for a significantly wider range of initial vectors than does classic RQI. We prove that the method converges locally cubically and we present several numerical examples demonstrating the improved global convergence behaviour. In particular, we apply it to compute eigenvalues in a band-gap spectrum of a Sturm-Liouville operator used to model photonic crystal fibres, where the target and unwanted eigenvalues are closely spaced. The examples show that the new method converges to the desired eigenpair even when the eigenvalue spacing is very small, often succeeding when classic RQI fails.

We study the stability and sensitivity of an absorbing layer for the Boltzmann equation by examining the Bhatnagar-Gross-Krook (BGK) approximation and using the perfectly matched layer (PML) technique. To ensure stability, we discard some parameters in the model and calculate the total sensitivity indices of the remaining parameters using the ANOVA expansion of multivariate functions. We conduct extensive numerical experiments to study stability and compute the total sensitivity indices, which allow us to identify the essential parameters of the model.

We consider the low-rank alternating directions implicit (ADI) iteration for approximately solving large-scale algebraic Sylvester equations. Inside every iteration step of this iterative process a pair of linear systems of equations has to be solved. We investigate the situation when those inner linear systems are solved inexactly by an iterative methods such as, for example, preconditioned Krylov subspace methods. The main contribution of this work are thresholds for the required accuracies regarding the inner linear systems which dictate when the employed inner Krylov subspace methods can be safely terminated. The goal is to save computational effort by solving the inner linear system as inaccurate as possible without endangering the functionality of the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics the convergence behaviour of the more expensive exact ADI method, where the linear systems are solved directly. Alongside the theoretical results, also strategies for an actual practical implementation of the stopping criteria are developed. Numerical experiments confirm the effectiveness of the proposed strategies.

Probabilistic variants of Model Order Reduction (MOR) methods have recently emerged for improving stability and computational performance of classical approaches. In this paper, we propose a probabilistic Reduced Basis Method (RBM) for the approximation of a family of parameter-dependent functions. It relies on a probabilistic greedy algorithm with an error indicator that can be written as an expectation of some parameter-dependent random variable. Practical algorithms relying on Monte Carlo estimates of this error indicator are discussed. In particular, when using Probably Approximately Correct (PAC) bandit algorithm, the resulting procedure is proven to be a weak greedy algorithm with high probability. Intended applications concern the approximation of a parameter-dependent family of functions for which we only have access to (noisy) pointwise evaluations. As a particular application, we consider the approximation of solution manifolds of linear parameter-dependent partial differential equations with a probabilistic interpretation through the Feynman-Kac formula.

This paper introduces panoptica, a versatile and performance-optimized package designed for computing instance-wise segmentation quality metrics from 2D and 3D segmentation maps. panoptica addresses the limitations of existing metrics and provides a modular framework that complements the original intersection over union-based panoptic quality with other metrics, such as the distance metric Average Symmetric Surface Distance. The package is open-source, implemented in Python, and accompanied by comprehensive documentation and tutorials. panoptica employs a three-step metrics computation process to cover diverse use cases. The efficacy of panoptica is demonstrated on various real-world biomedical datasets, where an instance-wise evaluation is instrumental for an accurate representation of the underlying clinical task. Overall, we envision panoptica as a valuable tool facilitating in-depth evaluation of segmentation methods.

北京阿比特科技有限公司