Recommender systems (RS) play important roles to match users' information needs for Internet applications. In natural language processing (NLP) domains, large language model (LLM) has shown astonishing emergent abilities (e.g., instruction following, reasoning), thus giving rise to the promising research direction of adapting LLM to RS for performance enhancements and user experience improvements. In this paper, we conduct a comprehensive survey on this research direction from an application-oriented view. We first summarize existing research works from two orthogonal perspectives: where and how to adapt LLM to RS. For the "WHERE" question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, and pipeline controller. For the "HOW" question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLMs or not, and whether to involve conventional recommendation model (CRM) for inference. Detailed analysis and general development trajectories are provided for both questions, respectively. Then, we highlight key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. We also actively maintain a GitHub repository for papers and other related resources in this rising direction: //github.com/CHIANGEL/Awesome-LLM-for-RecSys.
Bird's Eye View (BEV) representations are tremendously useful for perception-related automated driving tasks. However, generating BEVs from surround-view fisheye camera images is challenging due to the strong distortions introduced by such wide-angle lenses. We take the first step in addressing this challenge and introduce a baseline, F2BEV, to generate discretized BEV height maps and BEV semantic segmentation maps from fisheye images. F2BEV consists of a distortion-aware spatial cross attention module for querying and consolidating spatial information from fisheye image features in a transformer-style architecture followed by a task-specific head. We evaluate single-task and multi-task variants of F2BEV on our synthetic FB-SSEM dataset, all of which generate better BEV height and segmentation maps (in terms of the IoU) than a state-of-the-art BEV generation method operating on undistorted fisheye images. We also demonstrate discretized height map generation from real-world fisheye images using F2BEV. Our dataset is publicly available at //github.com/volvo-cars/FB-SSEM-dataset
Shape generation is the practice of producing 3D shapes as various representations for 3D content creation. Previous studies on 3D shape generation have focused on shape quality and structure, without or less considering the importance of semantic information. Consequently, such generative models often fail to preserve the semantic consistency of shape structure or enable manipulation of the semantic attributes of shapes during generation. In this paper, we proposed a novel semantic generative model named 3D Semantic Subspace Traverser that utilizes semantic attributes for category-specific 3D shape generation and editing. Our method utilizes implicit functions as the 3D shape representation and combines a novel latent-space GAN with a linear subspace model to discover semantic dimensions in the local latent space of 3D shapes. Each dimension of the subspace corresponds to a particular semantic attribute, and we can edit the attributes of generated shapes by traversing the coefficients of those dimensions. Experimental results demonstrate that our method can produce plausible shapes with complex structures and enable the editing of semantic attributes. The code and trained models are available at //github.com/TrepangCat/3D_Semantic_Subspace_Traverser
Large language models (LLMs) such as ChatGPT have seen widespread adoption due to their ability to follow user instructions well. Developing these LLMs involves a complex yet poorly understood workflow requiring training with human feedback. Replicating and understanding this instruction-following process faces three major challenges: the high cost of data collection, the lack of trustworthy evaluation, and the absence of reference method implementations. We address these challenges with AlpacaFarm, a simulator that enables research and development for learning from feedback at a low cost. First, we design LLM prompts to simulate human feedback that are 45x cheaper than crowdworkers and display high agreement with humans. Second, we propose an automatic evaluation and validate it against human instructions obtained on real-world interactions. Third, we contribute reference implementations for several methods (PPO, best-of-n, expert iteration, and more) that learn from pairwise feedback. Finally, as an end-to-end validation of AlpacaFarm, we train and evaluate eleven models on 10k pairs of real human feedback and show that rankings of models trained in AlpacaFarm match rankings of models trained on human data. As a demonstration of the research possible in AlpacaFarm, we find that methods that use a reward model can substantially improve over supervised fine-tuning and that our reference PPO implementation leads to a +10% improvement in win-rate against Davinci003. We release all components of AlpacaFarm at //github.com/tatsu-lab/alpaca_farm.
Commit message generation (CMG) is a challenging task in automated software engineering that aims to generate natural language descriptions of code changes for commits. Previous methods all start from the modified code snippets, outputting commit messages through template-based, retrieval-based, or learning-based models. While these methods can summarize what is modified from the perspective of code, they struggle to provide reasons for the commit. The correlation between commits and issues that could be a critical factor for generating rational commit messages is still unexplored. In this work, we delve into the correlation between commits and issues from the perspective of dataset and methodology. We construct the first dataset anchored on combining correlated commits and issues. The dataset consists of an unlabeled commit-issue parallel part and a labeled part in which each example is provided with human-annotated rational information in the issue. Furthermore, we propose \tool (\underline{Ex}traction, \underline{Gro}unding, \underline{Fi}ne-tuning), a novel paradigm that can introduce the correlation between commits and issues into the training phase of models. To evaluate whether it is effective, we perform comprehensive experiments with various state-of-the-art CMG models. The results show that compared with the original models, the performance of \tool-enhanced models is significantly improved.
Videos for mobile devices become the most popular access to share and acquire information recently. For the convenience of users' creation, in this paper, we present a system, namely MobileVidFactory, to automatically generate vertical mobile videos where users only need to give simple texts mainly. Our system consists of two parts: basic and customized generation. In the basic generation, we take advantage of the pretrained image diffusion model, and adapt it to a high-quality open-domain vertical video generator for mobile devices. As for the audio, by retrieving from our big database, our system matches a suitable background sound for the video. Additionally to produce customized content, our system allows users to add specified screen texts to the video for enriching visual expression, and specify texts for automatic reading with optional voices as they like.
Recently emerged technologies based on Deep Learning (DL) achieved outstanding results on a variety of tasks in the field of Artificial Intelligence (AI). However, these encounter several challenges related to robustness to adversarial inputs, ecological impact, and the necessity of huge amounts of training data. In response, researchers are focusing more and more interest on biologically grounded mechanisms, which are appealing due to the impressive capabilities exhibited by biological brains. This survey explores a range of these biologically inspired models of synaptic plasticity, their application in DL scenarios, and the connections with models of plasticity in Spiking Neural Networks (SNNs). Overall, Bio-Inspired Deep Learning (BIDL) represents an exciting research direction, aiming at advancing not only our current technologies but also our understanding of intelligence.
Lack of diversity in data collection has caused significant failures in machine learning (ML) applications. While ML developers perform post-collection interventions, these are time intensive and rarely comprehensive. Thus, new methods to track & manage data collection, iteration, and model training are necessary for evaluating whether datasets reflect real world variability. We present designing data, an iterative approach to data collection connecting HCI concepts with ML techniques. Our process includes (1) Pre-Collection Planning, to reflexively prompt and document expected data distributions; (2) Collection Monitoring, to systematically encourage sampling diversity; and (3) Data Familiarity, to identify samples that are unfamiliar to a model using density estimation. We apply designing data to a data collection and modeling task. We find models trained on ''designed'' datasets generalize better across intersectional groups than those trained on similarly sized but less targeted datasets, and that data familiarity is effective for debugging datasets.
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.