亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compared to mean regression and quantile regression, the literature on modal regression is very sparse. We propose a unified framework for Bayesian modal regression based on a family of unimodal distributions indexed by the mode along with other parameters that allow for flexible shapes and tail behaviors. Following prior elicitation, we carry out regression analysis of simulated data and datasets from several real-life applications. Besides drawing inference for covariate effects that are easy to interpret, we consider prediction and model selection under the proposed Bayesian modal regression framework. Evidence from these analyses suggest that the proposed inference procedures are very robust to outliers, enabling one to discover interesting covariate effects missed by mean or median regression, and to construct much tighter prediction intervals than those from mean or median regression. Computer programs for implementing the proposed Bayesian modal regression are available at //github.com/rh8liuqy/Bayesian_modal_regression.

相關內容

We consider speech enhancement for signals picked up in one noisy environment that must be rendered to a listener in another noisy environment. For both far-end noise reduction and near-end listening enhancement, it has been shown that excessive focus on noise suppression or intelligibility maximization may lead to excessive speech distortions and quality degradations in favorable noise conditions, where intelligibility is already at ceiling level. Recently [1,2] propose to remedy this with a minimum processing framework that either reduces noise or enhances listening a minimum amount given that a certain intelligibility criterion is still satisfied. Additionally, it has been shown that joint consideration of both environments improves speech enhancement performance. In this paper, we formulate a joint far- and near-end minimum processing framework, that improves intelligibility while limiting speech distortions in favorable noise conditions. We provide closed-form solutions to specific boundary scenarios and investigate performance for the general case using numerical optimization. We also show that concatenating existing minimum processing far- and near-end enhancement methods preserves the effects of the initial methods. Results show that the joint optimization can further improve performance compared to the concatenated approach.

Although in theory we can decide whether a given D-finite function is transcendental, transcendence proofs remain a challenge in practice. Typically, transcendence is certified by checking certain incomplete sufficient conditions. In this paper we propose an additional such condition which catches some cases on which other tests fail.

The inference of topological principles is a key problem in structured reconstruction. We observe that wrongly predicted topological relationships are often incurred by the lack of holistic geometry clues in low-level features. Inspired by the fact that massive signals can be compactly described with frequency analysis, we experimentally explore the efficiency and tendency of learning structure geometry in the frequency domain. Accordingly, we propose a frequency-domain feature learning strategy (F-Learn) to fuse scattered geometric fragments holistically for topology-intact structure reasoning. Benefiting from the parsimonious design, the F-Learn strategy can be easily deployed into a deep reconstructor with a lightweight model modification. Experiments demonstrate that the F-Learn strategy can effectively introduce structure awareness into geometric primitive detection and topology inference, bringing significant performance improvement to final structured reconstruction. Code and pre-trained models are available at //github.com/Geo-Tell/F-Learn.

Due to the extremely low latency, events have been recently exploited to supplement lost information for motion deblurring. Existing approaches largely rely on the perfect pixel-wise alignment between intensity images and events, which is not always fulfilled in the real world. To tackle this problem, we propose a novel coarse-to-fine framework, named NETwork of Event-based motion Deblurring with STereo event and intensity cameras (St-EDNet), to recover high-quality images directly from the misaligned inputs, consisting of a single blurry image and the concurrent event streams. Specifically, the coarse spatial alignment of the blurry image and the event streams is first implemented with a cross-modal stereo matching module without the need for ground-truth depths. Then, a dual-feature embedding architecture is proposed to gradually build the fine bidirectional association of the coarsely aligned data and reconstruct the sequence of the latent sharp images. Furthermore, we build a new dataset with STereo Event and Intensity Cameras (StEIC), containing real-world events, intensity images, and dense disparity maps. Experiments on real-world datasets demonstrate the superiority of the proposed network over state-of-the-art methods.

Logistic regression is an algorithm widely used for binary classification in various real-world applications such as fraud detection, medical diagnosis, and recommendation systems. However, training a logistic regression model with data from different parties raises privacy concerns. Secure Multi-Party Computation (MPC) is a cryptographic tool that allows multiple parties to train a logistic regression model jointly without compromising privacy. The efficiency of the online training phase becomes crucial when dealing with large-scale data in practice. In this paper, we propose an online efficient protocol for privacy-preserving logistic regression based on Function Secret Sharing (FSS). Our protocols are designed in the two non-colluding servers setting and assume the existence of a third-party dealer who only poses correlated randomness to the computing parties. During the online phase, two servers jointly train a logistic regression model on their private data by utilizing pre-generated correlated randomness. Furthermore, we propose accurate and MPC-friendly alternatives to the sigmoid function and encapsulate the logistic regression training process into a function secret sharing gate. The online communication overhead significantly decreases compared with the traditional secure logistic regression training based on secret sharing. We provide both theoretical and experimental analyses to demonstrate the efficiency and effectiveness of our method.

We consider Upper Domination, the problem of finding the minimal dominating set of maximum cardinality. Very few exact algorithms have been described for solving Upper Domination. In particular, no binary programming formulations for Upper Domination have been described in literature, although such formulations have proved quite successful for other kinds of domination problems. We introduce two such binary programming formulations, and show that both can be improved with the addition of extra constraints which reduce the number of feasible solutions. We compare the performance of the formulations on various kinds of graphs, and demonstrate that (a) the additional constraints improve the performance of both formulations, and (b) the first formulation outperforms the second in most cases, although the second performs better for very sparse graphs. Also included is a short proof that the upper domination number of any generalized Petersen graph P(n,k) is equal to n.

This paper works on non-autoregressive automatic speech recognition. A unimodal aggregation (UMA) is proposed to segment and integrate the feature frames that belong to the same text token, and thus to learn better feature representations for text tokens. The frame-wise features and weights are both derived from an encoder. Then, the feature frames with unimodal weights are integrated and further processed by a decoder. Connectionist temporal classification (CTC) loss is applied for training. Compared to the regular CTC, the proposed method learns better feature representations and shortens the sequence length, resulting in lower recognition error and computational complexity. Experiments on three Mandarin datasets show that UMA demonstrates superior or comparable performance to other advanced non-autoregressive methods, such as self-conditioned CTC. Moreover, by integrating self-conditioned CTC into the proposed framework, the performance can be further noticeably improved.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

北京阿比特科技有限公司