In this paper, we present a novel algorithm called the Hybrid Search algorithm that integrates the Zermelo's Navigation Initial Value Problem with the Ferraro-Mart\'in de Diego-Almagro algorithm to find the optimal route for a vessel to reach its destination. Our algorithm is designed to work in both Euclidean and spherical spaces and utilizes a heuristic that allows the vessel to move forward while remaining within a predetermined search cone centred around the destination. This approach not only improves efficiency but also includes obstacle avoidance, making it well-suited for real-world applications. We evaluate the performance of the Hybrid Search algorithm on synthetic vector fields and real ocean currents data, demonstrating its effectiveness and performance.
We present a short proof of a celebrated result of G\'acs and K\"orner giving sufficient and necessary condition on the joint distribution of two discrete random variables $X$ and $Y$ for the case when their mutual information matches the extractable (in the limit) common information. Our proof is based on the observation that the mere existence of certain random variables jointly distributed with $X$ and $Y$ can impose restriction on all random variables jointly distributed with $X$ and $Y$.
This manuscript is a research resource description and presents a large and novel Electronic Health Records (EHR) data resource, American Family Cohort (AFC). The AFC data is derived from Centers for Medicare and Medicaid Services (CMS) certified American Board of Family Medicine (ABFM) PRIME registry. The PRIME registry is the largest national Qualified Clinical Data Registry (QCDR) for Primary Care. The data is converted to a popular common data model, the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The resource presents approximately 90 million encounters for 7.5 million patients. All 100% of the patients present age, gender, and address information, and 73% report race. Nealy 93% of patients have lab data in LOINC, 86% have medication data in RxNorm, 93% have diagnosis in SNOWMED and ICD, 81% have procedures in HCPCS or CPT, and 61% have insurance information. The richness, breadth, and diversity of this research accessible and research ready data is expected to accelerate observational studies in many diverse areas. We expect this resource to facilitate research in many years to come.
This volume contains the proceedings of the 7th Working Formal Methods Symposium, which was held at the University of Bucharest, September 21-22, 2023.
Lately, Large Language Models have been widely used in code generation. GPT4 is considered the most potent Large Language Model from Openai. In this paper, we examine GPT3.5 and GPT4 as coding assistants. More specifically, we have constructed appropriate tests to check whether the two systems can a) answer typical questions that can arise during the code development, b) produce reliable code, and c) contribute to code debugging. The test results are impressive. The performance of GPT4 is outstanding and signals an increase in the productivity of programmers and the reorganization of software development procedures based on these new tools.
In this paper, we prove a Logarithmic Conjugation Theorem on finitely-connected tori. The theorem states that a harmonic function can be written as the real part of a function whose derivative is analytic and a finite sum of terms involving the logarithm of the modulus of a modified Weierstrass sigma function. We implement the method using arbitrary precision and use the result to find approximate solutions to the Laplace problem and Steklov eigenvalue problem. Using a posteriori estimation, we show that the solution of the Laplace problem on a torus with a few circular holes has error less than $10^{-100}$ using a few hundred degrees of freedom and the Steklov eigenvalues have similar error.
This paper presents our solution for the Real Robot Challenge (RRC) III, a competition featured in the NeurIPS 2022 Competition Track, aimed at addressing dexterous robotic manipulation tasks through learning from pre-collected offline data. Participants were provided with two types of datasets for each task: expert and mixed datasets with varying skill levels. While the simplest offline policy learning algorithm, Behavioral Cloning (BC), performed remarkably well when trained on expert datasets, it outperformed even the most advanced offline reinforcement learning (RL) algorithms. However, BC's performance deteriorated when applied to mixed datasets, and the performance of offline RL algorithms was also unsatisfactory. Upon examining the mixed datasets, we observed that they contained a significant amount of expert data, although this data was unlabeled. To address this issue, we proposed a semi-supervised learning-based classifier to identify the underlying expert behavior within mixed datasets, effectively isolating the expert data. To further enhance BC's performance, we leveraged the geometric symmetry of the RRC arena to augment the training dataset through mathematical transformations. In the end, our submission surpassed that of all other participants, even those who employed complex offline RL algorithms and intricate data processing and feature engineering techniques.
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence by promoting the joint design of resource-constrained IoT hardware devices and their learning-based software architectures. TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies (e.g., smart cities, automotive, and medical robotics). Given its multidisciplinary nature, the field of TinyML has been approached from many different angles: this comprehensive survey wishes to provide an up-to-date overview focused on all the learning algorithms within TinyML-based solutions. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature survey. In particular, firstly we will examine the three different workflows for implementing a TinyML-based system, i.e., ML-oriented, HW-oriented, and co-design. Secondly, we propose a taxonomy that covers the learning panorama under the TinyML lens, examining in detail the different families of model optimization and design, as well as the state-of-the-art learning techniques. Thirdly, this survey will present the distinct features of hardware devices and software tools that represent the current state-of-the-art for TinyML intelligent edge applications. Finally, we discuss the challenges and future directions.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.