亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To substantially enhance robot intelligence, there is a pressing need to develop a large model that enables general-purpose robots to proficiently undertake a broad spectrum of manipulation tasks, akin to the versatile task-planning ability exhibited by LLMs. The vast diversity in objects, robots, and manipulation tasks presents huge challenges. Our work introduces a comprehensive framework to develop a foundation model for general robotic manipulation that formalizes a manipulation task as contact synthesis. Specifically, our model takes as input object and robot manipulator point clouds, object physical attributes, target motions, and manipulation region masks. It outputs contact points on the object and associated contact forces or post-contact motions for robots to achieve the desired manipulation task. We perform extensive experiments both in the simulation and real-world settings, manipulating articulated rigid objects, rigid objects, and deformable objects that vary in dimensionality, ranging from one-dimensional objects like ropes to two-dimensional objects like cloth and extending to three-dimensional objects such as plasticine. Our model achieves average success rates of around 90\%. Supplementary materials and videos are available on our project website at //manifoundationmodel.github.io/.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · 可辨認的 · 樣例 · 有向 ·
2024 年 6 月 21 日

Remote proctoring technology, a cheating-preventive measure, often raises privacy and fairness concerns that may affect test-takers' experiences and the validity of test results. Our study explores how selectively obfuscating information in video recordings can protect test-takers' privacy while ensuring effective and fair cheating detection. Interviews with experts (N=9) identified four key video regions indicative of potential cheating behaviors: the test-taker's face, body, background and the presence of individuals in the background. Experts recommended specific obfuscation methods for each region based on privacy significance and cheating behavior frequency, ranging from conventional blurring to advanced methods like replacement with deepfake, 3D avatars and silhouetting. We then conducted a vignette experiment with potential test-takers (N=259, non-experts) to evaluate their perceptions of cheating detection, visual privacy and fairness, using descriptions and examples of still images for each expert-recommended combination of video regions and obfuscation methods. Our results indicate that the effectiveness of obfuscation methods varies by region. Tailoring remote proctoring with region-specific advanced obfuscation methods can improve the perceptions of privacy and fairness compared to the conventional methods, though it may decrease perceived information sufficiency for detecting cheating. However, non-experts preferred conventional blurring for videos they were more willing to share, highlighting a gap between the perceived effectiveness of the advanced obfuscation methods and their practical acceptance. This study contributes to the field of user-centered privacy by suggesting promising directions to address current remote proctoring challenges and guiding future research.

Analyzing the similarity of internal representations within and across different models has been an important technique for understanding the behavior of deep neural networks. Most existing methods for analyzing the similarity between representations of high dimensions, such as those based on Canonical Correlation Analysis (CCA) and widely used Centered Kernel Alignment (CKA), rely on statistical properties of the representations for a set of data points. In this paper, we focus on transformer models and study the similarity of representations between the hidden layers of individual transformers. In this context, we show that a simple sample-wise cosine similarity metric is capable of capturing the similarity and aligns with the complicated CKA. Our experimental results on common transformers reveal that representations across layers are positively correlated, albeit the similarity decreases when layers are far apart. We then propose an aligned training approach to enhance the similarity between internal representations, with trained models that enjoy the following properties: (1) the last-layer classifier can be directly applied right after any hidden layers, yielding intermediate layer accuracies much higher than those under standard training, (2) the layer-wise accuracies monotonically increase and reveal the minimal depth needed for the given task, (3) when served as multi-exit models, they achieve on-par performance with standard multi-exit architectures which consist of additional classifiers designed for early exiting in shallow layers. To our knowledge, our work is the first to show that one common classifier is sufficient for multi-exit models. We conduct experiments on both vision and NLP tasks to demonstrate the performance of the proposed aligned training.

Advances in artificial intelligence and human-computer interaction will likely lead to extended reality (XR) becoming pervasive. While XR can provide users with interactive, engaging, and immersive experiences, non-player characters are often utilized in pre-scripted and conventional ways. This paper argues for using large language models (LLMs) in XR by embedding them in avatars or as narratives to facilitate inclusion through prompt engineering and fine-tuning the LLMs. We argue that this inclusion will promote diversity for XR use. Furthermore, the versatile conversational capabilities of LLMs will likely increase engagement in XR, helping XR become ubiquitous. Lastly, we speculate that combining the information provided to LLM-powered spaces by users and the biometric data obtained might lead to novel privacy invasions. While exploring potential privacy breaches, examining user privacy concerns and preferences is also essential. Therefore, despite challenges, LLM-powered XR is a promising area with several opportunities.

Language models (LMs) are known to suffer from forgetting of previously learned examples when fine-tuned, breaking stability of deployed LM systems. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are associated with newly learned tasks. Insights on such associations enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples while the model learns $M$ new tasks and visualize their associations with a $M \times N$ matrix. We empirically demonstrate that the degree of forgetting can often be approximated by simple multiplicative contributions of the upstream examples and newly learned tasks. We also reveal more complicated patterns where specific subsets of examples are forgotten with statistics and visualization. Following our analysis, we predict forgetting that happens on upstream examples when learning a new task with matrix completion over the empirical associations, outperforming prior approaches that rely on trainable LMs. Project website: //inklab.usc.edu/lm-forgetting-prediction/

This paper introduces a "proof of concept" for a new approach to assistive robotics, integrating edge computing with Natural Language Processing (NLP) and computer vision to enhance the interaction between humans and robotic systems. Our "proof of concept" demonstrates the feasibility of using large language models (LLMs) and vision systems in tandem for interpreting and executing complex commands conveyed through natural language. This integration aims to improve the intuitiveness and accessibility of assistive robotic systems, making them more adaptable to the nuanced needs of users with disabilities. By leveraging the capabilities of edge computing, our system has the potential to minimize latency and support offline capability, enhancing the autonomy and responsiveness of assistive robots. Experimental results from our implementation on a robotic arm show promising outcomes in terms of accurate intent interpretation and object manipulation based on verbal commands. This research lays the groundwork for future developments in assistive robotics, focusing on creating highly responsive, user-centric systems that can significantly improve the quality of life for individuals with disabilities.

As the pace of AI technology continues to accelerate, more tools have become available to researchers to solve longstanding problems, Hybrid approaches available today continue to push the computational limits of efficiency and precision. One of such problems is the inverse kinematics of redundant systems. This paper explores the complexities of a 7 degree of freedom manipulator and explores 13 optimization techniques to solve it. Additionally, a novel approach is proposed to contribute to the field of algorithmic research. This was found to be over 200 times faster than the well-known traditional Particle Swarm Optimization technique. This new method may serve as a new field of search that combines the explorative capabilities of Machine Learning with the exploitative capabilities of numerical methods.

Dynamic gestures enable the transfer of directive information to a robot. Moreover, the ability of a robot to recognize them from a long distance makes communication more effective and practical. However, current state-of-the-art models for dynamic gestures exhibit limitations in recognition distance, typically achieving effective performance only within a few meters. In this work, we propose a model for recognizing dynamic gestures from a long distance of up to 20 meters. The model integrates the SlowFast and Transformer architectures (SFT) to effectively process and classify complex gesture sequences captured in video frames. SFT demonstrates superior performance over existing models.

Tactile sensors, which provide information about the physical properties of objects, are an essential component of robotic systems. The visuotactile sensing technology with the merits of high resolution and low cost has facilitated the development of robotics from environment exploration to dexterous operation. Over the years, several reviews on visuotactile sensors for robots have been presented, but few of them discussed the significance of signal processing methods to visuotactile sensors. Apart from ingenious hardware design, the full potential of the sensory system toward designated tasks can only be released with the appropriate signal processing methods. Therefore, this paper provides a comprehensive review of visuotactile sensors from the perspective of signal processing methods and outlooks possible future research directions for visuotactile sensors.

Efficient and robust grasp pose detection is vital for robotic manipulation. For general 6 DoF grasping, conventional methods treat all points in a scene equally and usually adopt uniform sampling to select grasp candidates. However, we discover that ignoring where to grasp greatly harms the speed and accuracy of current grasp pose detection methods. In this paper, we propose "graspness", a quality based on geometry cues that distinguishes graspable areas in cluttered scenes. A look-ahead searching method is proposed for measuring the graspness and statistical results justify the rationality of our method. To quickly detect graspness in practice, we develop a neural network named cascaded graspness model to approximate the searching process. Extensive experiments verify the stability, generality and effectiveness of our graspness model, allowing it to be used as a plug-and-play module for different methods. A large improvement in accuracy is witnessed for various previous methods after equipping our graspness model. Moreover, we develop GSNet, an end-to-end network that incorporates our graspness model for early filtering of low-quality predictions. Experiments on a large-scale benchmark, GraspNet-1Billion, show that our method outperforms previous arts by a large margin (30+ AP) and achieves a high inference speed. The library of GSNet has been integrated into AnyGrasp, which is at //github.com/graspnet/anygrasp_sdk.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司