亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weakly supervised semantic segmentation (WSSS) aims to bypass the need for laborious pixel-level annotation by using only image-level annotation. Most existing methods rely on Class Activation Maps (CAM) to derive pixel-level pseudo-labels and use them to train a fully supervised semantic segmentation model. Although these pseudo-labels are class-aware, indicating the coarse regions for particular classes, they are not object-aware and fail to delineate accurate object boundaries. To address this, we introduce a simple yet effective method harnessing the Segment Anything Model (SAM), a class-agnostic foundation model capable of producing fine-grained instance masks of objects, parts, and subparts. We use CAM pseudo-labels as cues to select and combine SAM masks, resulting in high-quality pseudo-labels that are both class-aware and object-aware. Our approach is highly versatile and can be easily integrated into existing WSSS methods without any modification. Despite its simplicity, our approach shows consistent gain over the state-of-the-art WSSS methods on both PASCAL VOC and MS-COCO datasets.

相關內容

Quantum Transfer Learning (QTL) recently gained popularity as a hybrid quantum-classical approach for image classification tasks by efficiently combining the feature extraction capabilities of large Convolutional Neural Networks with the potential benefits of Quantum Machine Learning (QML). Existing approaches, however, only utilize gate-based Variational Quantum Circuits for the quantum part of these procedures. In this work we present an approach to employ Quantum Annealing (QA) in QTL-based image classification. Specifically, we propose using annealing-based Quantum Boltzmann Machines as part of a hybrid quantum-classical pipeline to learn the classification of real-world, large-scale data such as medical images through supervised training. We demonstrate our approach by applying it to the three-class COVID-CT-MD dataset, a collection of lung Computed Tomography (CT) scan slices. Using Simulated Annealing as a stand-in for actual QA, we compare our method to classical transfer learning, using a neural network of the same order of magnitude, to display its improved classification performance. We find that our approach consistently outperforms its classical baseline in terms of test accuracy and AUC-ROC-Score and needs less training epochs to do this.

The task of Visual Place Recognition (VPR) aims to match a query image against references from an extensive database of images from different places, relying solely on visual cues. State-of-the-art pipelines focus on the aggregation of features extracted from a deep backbone, in order to form a global descriptor for each image. In this context, we introduce SALAD (Sinkhorn Algorithm for Locally Aggregated Descriptors), which reformulates NetVLAD's soft-assignment of local features to clusters as an optimal transport problem. In SALAD, we consider both feature-to-cluster and cluster-to-feature relations and we also introduce a 'dustbin' cluster, designed to selectively discard features deemed non-informative, enhancing the overall descriptor quality. Additionally, we leverage and fine-tune DINOv2 as a backbone, which provides enhanced description power for the local features, and dramatically reduces the required training time. As a result, our single-stage method not only surpasses single-stage baselines in public VPR datasets, but also surpasses two-stage methods that add a re-ranking with significantly higher cost. Code and models are available at //github.com/serizba/salad.

Current methods based on Neural Radiance Fields (NeRF) significantly lack the capacity to quantify uncertainty in their predictions, particularly on the unseen space including the occluded and outside scene content. This limitation hinders their extensive applications in robotics, where the reliability of model predictions has to be considered for tasks such as robotic exploration and planning in unknown environments. To address this, we propose a novel approach to estimate a 3D Uncertainty Field based on the learned incomplete scene geometry, which explicitly identifies these unseen regions. By considering the accumulated transmittance along each camera ray, our Uncertainty Field infers 2D pixel-wise uncertainty, exhibiting high values for rays directly casting towards occluded or outside the scene content. To quantify the uncertainty on the learned surface, we model a stochastic radiance field. Our experiments demonstrate that our approach is the only one that can explicitly reason about high uncertainty both on 3D unseen regions and its involved 2D rendered pixels, compared with recent methods. Furthermore, we illustrate that our designed uncertainty field is ideally suited for real-world robotics tasks, such as next-best-view selection.

I propose a new identification-robust test for the structural parameter in a heteroskedastic linear instrumental variables model. The proposed test statistic is similar in spirit to a jackknife version of the K-statistic and the resulting test has exact asymptotic size so long as an auxiliary parameter can be consistently estimated. This is possible under approximate sparsity even when the number of instruments is much larger than the sample size. As the number of instruments is allowed, but not required, to be large, the limiting behavior of the test statistic is difficult to examine via existing central limit theorems. Instead, I derive the asymptotic chi-squared distribution of the test statistic using a direct Gaussian approximation technique. To improve power against certain alternatives, I propose a simple combination with the sup-score statistic of Belloni et al. (2012) based on a thresholding rule. I demonstrate favorable size control and power properties in a simulation study and apply the new methods to revisit the effect of social spillovers in movie consumption.

In theory, diffusion curves promise complex color gradations for infinite-resolution vector graphics. In practice, existing realizations suffer from poor scaling, discretization artifacts, or insufficient support for rich boundary conditions. Previous applications of the boundary element method to diffusion curves have relied on polygonal approximations, which either forfeit the high-order smoothness of B\'ezier curves, or, when the polygonal approximation is extremely detailed, result in large and costly systems of equations that must be solved. In this paper, we utilize the boundary integral equation method to accurately and efficiently solve the underlying partial differential equation. Given a desired resolution and viewport, we then interpolate this solution and use the boundary element method to render it. We couple this hybrid approach with the fast multipole method on a non-uniform quadtree for efficient computation. Furthermore, we introduce an adaptive strategy to enable truly scalable infinite-resolution diffusion curves.

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This representation method can also maintain the flexibility of language. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR employs the diffusion model and the pre-trained language model (e.g., T5 and CLIP). We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into image SR, yields excellent results on both synthetic and real-world images. Code: //github.com/zhengchen1999/PromptSR.

Snapshot compressive spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement. Existing state-of-the-art methods are mostly based on deep unfolding structures but have intrinsic performance bottlenecks: $i$) the ill-posed problem of dealing with heavily degraded measurement, and $ii$) the regression loss-based reconstruction models being prone to recover images with few details. In this paper, we introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to enhance the regression-based deep unfolding method. Furthermore, to overcome the large computational cost challenge in LDM, we propose a lightweight model to generate knowledge priors in deep unfolding denoiser, and integrate these priors to guide the reconstruction process for compensating high-quality spectral signal details. Numeric and visual comparisons on synthetic and real-world datasets illustrate the superiority of our proposed method in both reconstruction quality and computational efficiency. Code will be released.

Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. Additionally, we demonstrate how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method.

The explosion of data has resulted in more and more associated text being transmitted along with images. Inspired by from distributed source coding, many works utilize image side information to enhance image compression. However, existing methods generally do not consider using text as side information to enhance perceptual compression of images, even though the benefits of multimodal synergy have been widely demonstrated in research. This begs the following question: How can we effectively transfer text-level semantic dependencies to help image compression, which is only available to the decoder? In this work, we propose a novel deep image compression method with text-guided side information to achieve a better rate-perception-distortion tradeoff. Specifically, we employ the CLIP text encoder and an effective Semantic-Spatial Aware block to fuse the text and image features. This is done by predicting a semantic mask to guide the learned text-adaptive affine transformation at the pixel level. Furthermore, we design a text-conditional generative adversarial networks to improve the perceptual quality of reconstructed images. Extensive experiments involving four datasets and ten image quality assessment metrics demonstrate that the proposed approach achieves superior results in terms of rate-perception trade-off and semantic distortion.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司