Many popular specifications for Vector Autoregressions (VARs) with multivariate stochastic volatility are not invariant to the way the variables are ordered due to the use of a Cholesky decomposition for the error covariance matrix. We show that the order invariance problem in existing approaches is likely to become more serious in large VARs. We propose the use of a specification which avoids the use of this Cholesky decomposition. We show that the presence of multivariate stochastic volatility allows for identification of the proposed model and prove that it is invariant to ordering. We develop a Markov Chain Monte Carlo algorithm which allows for Bayesian estimation and prediction. In exercises involving artificial and real macroeconomic data, we demonstrate that the choice of variable ordering can have non-negligible effects on empirical results. In a macroeconomic forecasting exercise involving VARs with 20 variables we find that our order-invariant approach leads to the best forecasts and that some choices of variable ordering can lead to poor forecasts using a conventional, non-order invariant, approach.
We consider the dynamic pricing problem with covariates under a generalized linear demand model: a seller can dynamically adjust the price of a product over a horizon of $T$ time periods, and at each time period $t$, the demand of the product is jointly determined by the price and an observable covariate vector $x_t\in\mathbb{R}^d$ through an unknown generalized linear model. Most of the existing literature assumes the covariate vectors $x_t$'s are independently and identically distributed (i.i.d.); the few papers that relax this assumption either sacrifice model generality or yield sub-optimal regret bounds. In this paper we show that a simple pricing algorithm has an $O(d\sqrt{T}\log T)$ regret upper bound without assuming any statistical structure on the covariates $x_t$ (which can even be arbitrarily chosen). The upper bound on the regret matches the lower bound (even under the i.i.d. assumption) up to logarithmic factors. Our paper thus shows that (i) the i.i.d. assumption is not necessary for obtaining low regret, and (ii) the regret bound can be independent of the (inverse) minimum eigenvalue of the covariance matrix of the $x_t$'s, a quantity present in previous bounds. Furthermore, we discuss a condition under which a better regret is achievable and how a Thompson sampling algorithm can be applied to give an efficient computation of the prices.
Time-varying parameter VARs with stochastic volatility are routinely used for structural analysis and forecasting in settings involving a few endogenous variables. Applying these models to high-dimensional datasets has proved to be challenging due to intensive computations and over-parameterization concerns. We develop an efficient Bayesian sparsification method for a class of models we call hybrid TVP-VARs--VARs with time-varying parameters in some equations but constant coefficients in others. Specifically, for each equation, the new method automatically decides whether the VAR coefficients and contemporaneous relations among variables are constant or time-varying. Using US datasets of various dimensions, we find evidence that the parameters in some, but not all, equations are time varying. The large hybrid TVP-VAR also forecasts better than many standard benchmarks.
In this work we introduce a computational efficient data-driven framework suitable for quantifying the uncertainty in physical parameters of computer models, represented by differential equations. We construct physics-informed priors for differential equations, which are multi-output Gaussian process (GP) priors that encode the model's structure in the covariance function. We extend this into a fully Bayesian framework which allows quantifying the uncertainty of physical parameters and model predictions. Since physical models are usually imperfect descriptions of the real process, we allow the model to deviate from the observed data by considering a discrepancy function. For inference Hamiltonian Monte Carlo (HMC) sampling is used. This work is motivated by the need for interpretable parameters for the hemodynamics of the heart for personal treatment of hypertension. The model used is the arterial Windkessel model, which represents the hemodynamics of the heart through differential equations with physically interpretable parameters of medical interest. As most physical models, the Windkessel model is an imperfect description of the real process. To demonstrate our approach we simulate noisy data from a more complex physical model with known mathematical connections to our modeling choice. We show that without accounting for discrepancy, the posterior of the physical parameters deviates from the true value while when accounting for discrepancy gives reasonable quantification of physical parameters uncertainty and reduces the uncertainty in subsequent model predictions.
This paper studies a new variant of the stochastic multi-armed bandits problem where auxiliary information about the arm rewards is available in the form of control variates. In many applications like queuing and wireless networks, the arm rewards are functions of some exogenous variables. The mean values of these variables are known a priori from historical data and can be used as control variates. Leveraging the theory of control variates, we obtain mean estimates with smaller variance and tighter confidence bounds. We develop an upper confidence bound based algorithm named UCB-CV and characterize the regret bounds in terms of the correlation between rewards and control variates when they follow a multivariate normal distribution. We also extend UCB-CV to other distributions using resampling methods like Jackknifing and Splitting. Experiments on synthetic problem instances validate performance guarantees of the proposed algorithms.
The deep neural network suffers from many fundamental issues in machine learning. For example, it often gets trapped into a local minimum in training, and its prediction uncertainty is hard to be assessed. To address these issues, we propose the so-called kernel-expanded stochastic neural network (K-StoNet) model, which incorporates support vector regression (SVR) as the first hidden layer and reformulates the neural network as a latent variable model. The former maps the input vector into an infinite dimensional feature space via a radial basis function (RBF) kernel, ensuring absence of local minima on its training loss surface. The latter breaks the high-dimensional nonconvex neural network training problem into a series of low-dimensional convex optimization problems, and enables its prediction uncertainty easily assessed. The K-StoNet can be easily trained using the imputation-regularized optimization (IRO) algorithm. Compared to traditional deep neural networks, K-StoNet possesses a theoretical guarantee to asymptotically converge to the global optimum and enables the prediction uncertainty easily assessed. The performances of the new model in training, prediction and uncertainty quantification are illustrated by simulated and real data examples.
We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. The goal is to obtain a discretization consisting of "local" problems that can be solved on parallel computers efficiently. However, this introduces significant sources of error that must be evaluated. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
Owing to the recent advances in "Big Data" modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI). SVI poses variational inference as a stochastic optimization problem and solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive and classification tasks by applying complex Bayesian models that have observed as well as latent variables. This paper aims to decentralize it allowing parallel computation, secure learning and robustness benefits. We use Alternating Direction Method of Multipliers in a top-down setting to develop a distributed SVI algorithm such that independent learners running inference algorithms only require sharing the estimated model parameters instead of their private datasets. Our work extends the distributed SVI-ADMM algorithm that we first propose, to an ADMM-based networked SVI algorithm in which not only are the learners working distributively but they share information according to rules of a graph by which they form a network. This kind of work lies under the umbrella of `deep learning over networks' and we verify our algorithm for a topic-modeling problem for corpus of Wikipedia articles. We illustrate the results on latent Dirichlet allocation (LDA) topic model in large document classification, compare performance with the centralized algorithm, and use numerical experiments to corroborate the analytical results.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.