Ensuring fairness in instruments like survey questionnaires or educational tests is crucial. One way to address this is by a Differential Item Functioning (DIF) analysis, which examines if different subgroups respond differently to a particular item, controlling for their overall latent construct level. DIF analysis is typically conducted to assess measurement invariance at the item level. Traditional DIF analysis methods require knowing the comparison groups (reference and focal groups) and anchor items (a subset of DIF-free items). Such prior knowledge may not always be available, and psychometric methods have been proposed for DIF analysis when one piece of information is unknown. More specifically, when the comparison groups are unknown while anchor items are known, latent DIF analysis methods have been proposed that estimate the unknown groups by latent classes. When anchor items are unknown while comparison groups are known, methods have also been proposed, typically under a sparsity assumption -- the number of DIF items is not too large. However, DIF analysis when both pieces of information are unknown has not received much attention. This paper proposes a general statistical framework under this setting. In the proposed framework, we model the unknown groups by latent classes and introduce item-specific DIF parameters to capture the DIF effects. Assuming the number of DIF items is relatively small, an $L_1$-regularised estimator is proposed to simultaneously identify the latent classes and the DIF items. A computationally efficient Expectation-Maximisation (EM) algorithm is developed to solve the non-smooth optimisation problem for the regularised estimator. The performance of the proposed method is evaluated by simulation studies and an application to item response data from a real-world educational test.
Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at //github.com/lm-sys/llm-decontaminator.
Many constraint satisfaction and optimisation problems can be solved effectively by encoding them as instances of the Boolean Satisfiability problem (SAT). However, even the simplest types of constraints have many encodings in the literature with widely varying performance, and the problem of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning approach. We show that it is possible to select encodings effectively using a standard set of features for constraint problems; however we obtain better performance with a new set of features specifically designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when using the same feature set. We discuss the relative importance of instance features to the task of selecting the best encodings, and compare several variations of the machine learning method.
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We then apply the inverse Fourier transform to obtain the covariance function (according to the Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. We are the first to discover its rationale and effectiveness for PDE solving. Next,we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to greatly promote computational efficiency and scalability, without any low-rank approximations. We show the advantage of our method in systematic experiments.
We consider the problem of estimating the parameters of a Markov Random Field with hard-constraints using a single sample. As our main running examples, we use the $k$-SAT and the proper coloring models, as well as general $H$-coloring models; for all of these we obtain both positive and negative results. In contrast to the soft-constrained case, we show in particular that single-sample estimation is not always possible, and that the existence of an estimator is related to the existence of non-satisfiable instances. Our algorithms are based on the pseudo-likelihood estimator. We show variance bounds for this estimator using coupling techniques inspired, in the case of $k$-SAT, by Moitra's sampling algorithm (JACM, 2019); our positive results for colorings build on this new coupling approach. For $q$-colorings on graphs with maximum degree $d$, we give a linear-time estimator when $q>d+1$, whereas the problem is non-identifiable when $q\leq d+1$. For general $H$-colorings, we show that standard conditions that guarantee sampling, such as Dobrushin's condition, are insufficient for one-sample learning; on the positive side, we provide a general condition that is sufficient to guarantee linear-time learning and obtain applications for proper colorings and permissive models. For the $k$-SAT model on formulas with maximum degree $d$, we provide a linear-time estimator when $k\gtrsim 6.45\log d$, whereas the problem becomes non-identifiable when $k\lesssim \log d$.
In this paper we propose two new subclasses of Petri nets with resets, for which the reachability and coverability problems become tractable. Namely, we add an acyclicity condition that only applies to the consumptions and productions, not the resets. The first class is acyclic Petri nets with resets, and we show that coverability is PSPACE-complete for them. This contrasts the known Ackermann-hardness for coverability in (not necessarily acyclic) Petri nets with resets. We prove that the reachability problem remains undecidable for acyclic Petri nets with resets. The second class concerns workflow nets, a practically motivated and natural subclass of Petri nets. Here, we show that both coverability and reachability in acyclic workflow nets with resets are PSPACE-complete. Without the acyclicity condition, reachability and coverability in workflow nets with resets are known to be equally hard as for Petri nets with resets, that being Ackermann-hard and undecidable, respectively.
In this paper, we propose a ground-based monocular UAV localisation system that detects and localises an LED marker attached to the underside of a UAV. Our system removes the need for extensive infrastructure and calibration unlike existing technologies such as UWB, radio frequency and multi-camera systems often used for localisation in GPS-denied environment. To improve deployablity for real-world applications without the need to collect extensive real dataset, we train a CNN on synthetic binary images as opposed to using real images in existing monocular UAV localisation methods, and factor in the camera's zoom to allow tracking of UAVs flying at further distances. We propose NoisyCutout algorithm for augmenting synthetic binary images to simulate binary images processed from real images and show that it improves localisation accuracy as compared to using existing salt-and-pepper and Cutout augmentation methods. We also leverage uncertainty propagation to modify the CNN's loss function and show that this also improves localisation accuracy. Real-world experiments are conducted to evaluate our methods and we achieve an overall 3D RMSE of approximately 0.41m.
Many trials are designed to collect outcomes at or around pre-specified times after randomization. In practice, there can be substantial variability in the times when participants are actually assessed. Such irregular assessment times pose a challenge to learning the effect of treatment since not all participants have outcome assessments at the times of interest. Furthermore, observed outcome values may not be representative of all participants' outcomes at a given time. This problem, known as informative assessment times, can arise if participants tend to have assessments when their outcomes are better (or worse) than at other times, or if participants with better outcomes tend to have more (or fewer) assessments. Methods have been developed that account for some types of informative assessment; however, since these methods rely on untestable assumptions, sensitivity analyses are needed. We develop a sensitivity analysis methodology by extending existing weighting methods. Our method accounts for the possibility that participants with worse outcomes at a given time are more (or less) likely than other participants to have an assessment at that time, even after controlling for variables observed earlier in the study. We apply our method to a randomized trial of low-income individuals with uncontrolled asthma. We illustrate implementation of our influence-function based estimation procedure in detail, and we derive the large-sample distribution of our estimator and evaluate its finite-sample performance.
In this paper, we consider the problem of estimating parameters in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.