亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the problem of estimating parameters in a linear regression model. We propose a sequential learning procedure to determine the sample size for achieving a given small estimation risk, under the widely used Gauss-Markov setup with independent normal errors. The procedure is proven to enjoy the second-order efficiency and risk-efficiency properties, which are validated through Monte Carlo simulation studies. Using e-commerce data, we implement the procedure to examine the influential factors of online sales.

相關內容

In this paper we propose a method for the optimal allocation of observations between an intrinsically explainable glass box model and a black box model. An optimal allocation being defined as one which, for any given explainability level (i.e. the proportion of observations for which the explainable model is the prediction function), maximizes the performance of the ensemble on the underlying task, and maximizes performance of the explainable model on the observations allocated to it, subject to the maximal ensemble performance condition. The proposed method is shown to produce such explainability optimal allocations on a benchmark suite of tabular datasets across a variety of explainable and black box model types. These learned allocations are found to consistently maintain ensemble performance at very high explainability levels (explaining $74\%$ of observations on average), and in some cases even outperforming both the component explainable and black box models while improving explainability.

In this paper, we present a novel formulation to model the effects of a locked differential on the lateral dynamics of an autonomous open-wheel racecar. The model is used in a Model Predictive Controller in which we included a micro-steps discretization approach to accurately linearize the dynamics and produce a prediction suitable for real-time implementation. The stability analysis of the model is presented, as well as a brief description of the overall planning and control scheme which includes an offline trajectory generation pipeline, an online local speed profile planner, and a low-level longitudinal controller. An improvement of the lateral path tracking is demonstrated in preliminary experimental results that have been produced on a Dallara AV-21 during the first Indy Autonomous Challenge event on the Monza F1 racetrack. Final adjustments and tuning have been performed in a high-fidelity simulator demonstrating the effectiveness of the solution when performing close to the tire limits.

The issue of generative pretraining for vision models has persisted as a long-standing conundrum. At present, the text-to-image (T2I) diffusion model demonstrates remarkable proficiency in generating high-definition images matching textual inputs, a feat made possible through its pre-training on large-scale image-text pairs. This leads to a natural inquiry: can diffusion models be utilized to tackle visual perception tasks? In this paper, we propose a simple yet effective scheme to harness a diffusion model for visual perception tasks. Our key insight is to introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception. The effect of meta prompts are two-fold. First, as a direct replacement of the text embeddings in the T2I models, it can activate task-relevant features during feature extraction. Second, it will be used to re-arrange the extracted features to ensures that the model focuses on the most pertinent features for the task on hand. Additionally, we design a recurrent refinement training strategy that fully leverages the property of diffusion models, thereby yielding stronger visual features. Extensive experiments across various benchmarks validate the effectiveness of our approach. Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes. Concurrently, the proposed method attains results comparable to the current state-of-the-art in semantic segmentation on ADE20K and pose estimation on COCO datasets, further exemplifying its robustness and versatility.

In this paper, we delve into the challenge of optimizing joint communication and computation for semantic communication over wireless networks using a probability graph framework. In the considered model, the base station (BS) extracts the small-sized compressed semantic information through removing redundant messages based on the stored knowledge base. Specifically, the knowledge base is encapsulated in a probability graph that encapsulates statistical relations. At the user side, the compressed information is accurately deduced using the same probability graph employed by the BS. While this approach introduces an additional computational overhead for semantic information extraction, it significantly curtails communication resource consumption by transmitting concise data. We derive both communication and computation cost models based on the inference process of the probability graph. Building upon these models, we introduce a joint communication and computation resource allocation problem aimed at minimizing the overall energy consumption of the network, while accounting for latency, power, and semantic constraints. To address this problem, we obtain a closed-form solution for transmission power under a fixed semantic compression ratio. Subsequently, we propose an efficient linear search-based algorithm to attain the optimal solution for the considered problem with low computational complexity. Simulation results underscore the effectiveness of our proposed system, showcasing notable improvements compared to conventional non-semantic schemes.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司