A fundamental challenge in multi-agent reinforcement learning (MARL) is to learn the joint policy in an extremely large search space, which grows exponentially with the number of agents. Moreover, fully decentralized policy factorization significantly restricts the search space, which may lead to sub-optimal policies. In contrast, the auto-regressive joint policy can represent a much richer class of joint policies by factorizing the joint policy into the product of a series of conditional individual policies. While such factorization introduces the action dependency among agents explicitly in sequential execution, it does not take full advantage of the dependency during learning. In particular, the subsequent agents do not give the preceding agents feedback about their decisions. In this paper, we propose a new framework Back-Propagation Through Agents (BPTA) that directly accounts for both agents' own policy updates and the learning of their dependent counterparts. This is achieved by propagating the feedback through action chains. With the proposed framework, our Bidirectional Proximal Policy Optimisation (BPPO) outperforms the state-of-the-art methods. Extensive experiments on matrix games, StarCraftII v2, Multi-agent MuJoCo, and Google Research Football demonstrate the effectiveness of the proposed method.
Imitation learning provides an efficient way to teach robots dexterous skills; however, learning complex skills robustly and generalizablely usually consumes large amounts of human demonstrations. To tackle this challenging problem, we present 3D Diffusion Policy (DP3), a novel visual imitation learning approach that incorporates the power of 3D visual representations into diffusion policies, a class of conditional action generative models. The core design of DP3 is the utilization of a compact 3D visual representation, extracted from sparse point clouds with an efficient point encoder. In our experiments involving 72 simulation tasks, DP3 successfully handles most tasks with just 10 demonstrations and surpasses baselines with a 55.3% relative improvement. In 4 real robot tasks, DP3 demonstrates precise control with a high success rate of 85%, given only 40 demonstrations of each task, and shows excellent generalization abilities in diverse aspects, including space, viewpoint, appearance, and instance. Interestingly, in real robot experiments, DP3 rarely violates safety requirements, in contrast to baseline methods which frequently do, necessitating human intervention. Our extensive evaluation highlights the critical importance of 3D representations in real-world robot learning. Videos, code, and data are available on //3d-diffusion-policy.github.io .
Approximate value iteration (AVI) is a family of algorithms for reinforcement learning (RL) that aims to obtain an approximation of the optimal value function. Generally, AVI algorithms implement an iterated procedure where each step consists of (i) an application of the Bellman operator and (ii) a projection step into a considered function space. Notoriously, the Bellman operator leverages transition samples, which strongly determine its behavior, as uninformative samples can result in negligible updates or long detours, whose detrimental effects are further exacerbated by the computationally intensive projection step. To address these issues, we propose a novel alternative approach based on learning an approximate version of the Bellman operator rather than estimating it through samples as in AVI approaches. This way, we are able to (i) generalize across transition samples and (ii) avoid the computationally intensive projection step. For this reason, we call our novel operator projected Bellman operator (PBO). We formulate an optimization problem to learn PBO for generic sequential decision-making problems, and we theoretically analyze its properties in two representative classes of RL problems. Furthermore, we theoretically study our approach under the lens of AVI and devise algorithmic implementations to learn PBO in offline and online settings by leveraging neural network parameterizations. Finally, we empirically showcase the benefits of PBO w.r.t. the regular Bellman operator on several RL problems.
The rapid development of deep learning techniques, improved computational power, and the availability of vast training data have led to significant advancements in pre-trained models and large language models (LLMs). Pre-trained models based on architectures such as BERT and Transformer, as well as LLMs like ChatGPT, have demonstrated remarkable language capabilities and found applications in Software engineering. Software engineering tasks can be divided into many categories, among which generative tasks are the most concern by researchers, where pre-trained models and LLMs possess powerful language representation and contextual awareness capabilities, enabling them to leverage diverse training data and adapt to generative tasks through fine-tuning, transfer learning, and prompt engineering. These advantages make them effective tools in generative tasks and have demonstrated excellent performance. In this paper, we present a comprehensive literature review of generative tasks in SE using pre-trained models and LLMs. We accurately categorize SE generative tasks based on software engineering methodologies and summarize the advanced pre-trained models and LLMs involved, as well as the datasets and evaluation metrics used. Additionally, we identify key strengths, weaknesses, and gaps in existing approaches, and propose potential research directions. This review aims to provide researchers and practitioners with an in-depth analysis and guidance on the application of pre-trained models and LLMs in generative tasks within SE.
In real-world settings involving consequential decision-making, the deployment of machine learning systems generally requires both reliable uncertainty quantification and protection of individuals' privacy. We present a framework that treats these two desiderata jointly. Our framework is based on conformal prediction, a methodology that augments predictive models to return prediction sets that provide uncertainty quantification -- they provably cover the true response with a user-specified probability, such as 90%. One might hope that when used with privately-trained models, conformal prediction would yield privacy guarantees for the resulting prediction sets; unfortunately, this is not the case. To remedy this key problem, we develop a method that takes any pre-trained predictive model and outputs differentially private prediction sets. Our method follows the general approach of split conformal prediction; we use holdout data to calibrate the size of the prediction sets but preserve privacy by using a privatized quantile subroutine. This subroutine compensates for the noise introduced to preserve privacy in order to guarantee correct coverage. We evaluate the method on large-scale computer vision datasets.
Deep graph clustering has recently received significant attention due to its ability to enhance the representation learning capabilities of models in unsupervised scenarios. Nevertheless, deep clustering for temporal graphs, which could capture crucial dynamic interaction information, has not been fully explored. It means that in many clustering-oriented real-world scenarios, temporal graphs can only be processed as static graphs. This not only causes the loss of dynamic information but also triggers huge computational consumption. To solve the problem, we propose a general framework for deep Temporal Graph Clustering called TGC, which introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs. In addition, we discuss differences between temporal graph clustering and static graph clustering from several levels. To verify the superiority of the proposed framework TGC, we conduct extensive experiments. The experimental results show that temporal graph clustering enables more flexibility in finding a balance between time and space requirements, and our framework can effectively improve the performance of existing temporal graph learning methods. The code is released: //github.com/MGitHubL/Deep-Temporal-Graph-Clustering.
Statistical learning theory is the foundation of machine learning, providing theoretical bounds for the risk of models learnt from a (single) training set, assumed to issue from an unknown probability distribution. In actual deployment, however, the data distribution may (and often does) vary, causing domain adaptation/generalization issues. In this paper we lay the foundations for a `credal' theory of learning, using convex sets of probabilities (credal sets) to model the variability in the data-generating distribution. Such credal sets, we argue, may be inferred from a finite sample of training sets. Bounds are derived for the case of finite hypotheses spaces (both assuming realizability or not) as well as infinite model spaces, which directly generalize classical results.
Despite the considerable potential of reinforcement learning (RL), robotic control tasks predominantly rely on imitation learning (IL) due to its better sample efficiency. However, it is costly to collect comprehensive expert demonstrations that enable IL to generalize to all possible scenarios, and any distribution shift would require recollecting data for finetuning. Therefore, RL is appealing if it can build upon IL as an efficient autonomous self-improvement procedure. We propose imitation bootstrapped reinforcement learning (IBRL), a novel framework for sample-efficient RL with demonstrations that first trains an IL policy on the provided demonstrations and then uses it to propose alternative actions for both online exploration and bootstrapping target values. Compared to prior works that oversample the demonstrations or regularize RL with an additional imitation loss, IBRL is able to utilize high quality actions from IL policies since the beginning of training, which greatly accelerates exploration and training efficiency. We evaluate IBRL on 6 simulation and 3 real-world tasks spanning various difficulty levels. IBRL significantly outperforms prior methods and the improvement is particularly more prominent in harder tasks.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.