亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum secret sharing is an important cryptographic primitive for network applications ranging from secure money transfer to multiparty quantum computation. Currently most progresses on quantum secret sharing suffer from rate-distance bound, and thus the key rates are limited and unpractical for large-scale deployment. Furthermore, the performance of most existing protocols is analyzed in the asymptotic regime without considering participant attacks. Here we report a measurement-device-independent quantum secret sharing protocol with improved key rate and transmission distance. Based on spatial multiplexing, our protocol shows it can break rate-distance bounds over network under at least ten communication parties. Compared with other protocols, our work improves the secret key rate by more than two orders of magnitude and has a longer transmission distance. We analyze the security of our protocol in the composable framework considering participant attacks. Based on the security analysis, we also evaluate their performance in the finite-size regime. In addition, we investigate applying our protocol to digital signatures where the signature rate is improved more than $10^7$ times compared with existing protocols. Based on our results, we anticipate that our quantum secret sharing protocol will provide a solid future for multiparty applications on quantum network.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as ``quantum combs''). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience. Finally, we establish a strong relationship between various quantum computational complexity classes and distance estimation problems.

The existence of incompatible observables is a cornerstone of quantum mechanics and a valuable resource in quantum technologies. Here we introduce a measure of incompatibility, called the mutual eigenspace disturbance (MED), which quantifies the amount of disturbance induced by the measurement of a sharp observable on the eigenspaces of another. The MED provides a metric on the space of von Neumann measurements, and can be efficiently estimated by letting the measurement processes act in an indefinite order, using a setup known as the quantum switch, which also allows one to quantify the noncommutativity of arbitrary quantum processes. Thanks to these features, the MED can be used in quantum machine learning tasks. We demonstrate this application by providing an unsupervised algorithm that clusters unknown von Neumann measurements. Our algorithm is robust to noise can be used to identify groups of observers that share approximately the same measurement context.

We derive an analytical calculation formula for the channel capacity of a classical channel without any iteration while its existing algorithms require iterations and the number of iteration depends on the required precision level. Hence, our formula is its first analytical formula without any iteration. We apply the obtained formula to examples and see how the obtained formula works in these examples. Then, we extend it to the channel capacity of a classical-quantum (cq-) channel. Many existing studies proposed algorithms for a cq-channel and all of them require iterations. Our extended analytical algorithm have also no iteration and output the exactly optimum values.

Deep neural network based image compression has been extensively studied. Model robustness is largely overlooked, though it is crucial to service enabling. We perform the adversarial attack by injecting a small amount of noise perturbation to original source images, and then encode these adversarial examples using prevailing learnt image compression models. Experiments report severe distortion in the reconstruction of adversarial examples, revealing the general vulnerability of existing methods, regardless of the settings used in underlying compression model (e.g., network architecture, loss function, quality scale) and optimization strategy used for injecting perturbation (e.g., noise threshold, signal distance measurement). Later, we apply the iterative adversarial finetuning to refine pretrained models. In each iteration, random source images and adversarial examples are mixed to update underlying model. Results show the effectiveness of the proposed finetuning strategy by substantially improving the compression model robustness. Overall, our methodology is simple, effective, and generalizable, making it attractive for developing robust learnt image compression solution. All materials have been made publicly accessible at //njuvision.github.io/RobustNIC for reproducible research.

Trojan attacks on deep neural networks are both dangerous and surreptitious. Over the past few years, Trojan attacks have advanced from using only a single input-agnostic trigger and targeting only one class to using multiple, input-specific triggers and targeting multiple classes. However, Trojan defenses have not caught up with this development. Most defense methods still make inadequate assumptions about Trojan triggers and target classes, thus, can be easily circumvented by modern Trojan attacks. To deal with this problem, we propose two novel "filtering" defenses called Variational Input Filtering (VIF) and Adversarial Input Filtering (AIF) which leverage lossy data compression and adversarial learning respectively to effectively purify potential Trojan triggers in the input at run time without making assumptions about the number of triggers/target classes or the input dependence property of triggers. In addition, we introduce a new defense mechanism called "Filtering-then-Contrasting" (FtC) which helps avoid the drop in classification accuracy on clean data caused by "filtering", and combine it with VIF/AIF to derive new defenses of this kind. Extensive experimental results and ablation studies show that our proposed defenses significantly outperform well-known baseline defenses in mitigating five advanced Trojan attacks including two recent state-of-the-art while being quite robust to small amounts of training data and large-norm triggers.

The false discovery rate (FDR) and the false non-discovery rate (FNR), defined as the expected false discovery proportion (FDP) and the false non-discovery proportion (FNP), are the most popular benchmarks for multiple testing. Despite the theoretical and algorithmic advances in recent years, the optimal tradeoff between the FDR and the FNR has been largely unknown except for certain restricted class of decision rules, e.g., separable rules, or for other performance metrics, e.g., the marginal FDR and the marginal FNR (mFDR and mFNR). In this paper we determine the asymptotically optimal FDR-FNR tradeoff under the two-group random mixture model when the number of hypotheses tends to infinity. Distinct from the optimal mFDR-mFNR tradeoff, which is achieved by separable decision rules, the optimal FDR-FNR tradeoff requires compound rules and randomization even in the large-sample limit. A data-driven version of the oracle rule is proposed and shown to outperform existing methodologies on simulated data for models as simple as the normal mean model. Finally, to address the limitation of the FDR and FNR which only control the expectations but not the fluctuations of the FDP and FNP, we also determine the optimal tradeoff when the FDP and FNP are controlled with high probability and show it coincides with that of the mFDR and the mFNR.

A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov chain Monte Carlo community for being a remarkably strong result, but it is also known for being one that is notably difficult to establish. Indeed, one has to prove that the probability to reach a state $\mathbf{y}$ from a state $\mathbf{x}$, using a sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs $(\mathbf{x}, \mathbf{y})$ such that $\mathbf{x} \neq \mathbf{y}$. We provide in this paper a weaker version that does not require an inequality between the probabilities for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound, as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set. The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces with their Metropolis--Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others (and the reasons why are made clear). A thorough study in a specific context of graphical-model simulation is also conducted.

Graph contrastive learning has emerged as a powerful tool for unsupervised graph representation learning. The key to the success of graph contrastive learning is to acquire high-quality positive and negative samples as contrasting pairs for the purpose of learning underlying structural semantics of the input graph. Recent works usually sample negative samples from the same training batch with the positive samples, or from an external irrelevant graph. However, a significant limitation lies in such strategies, which is the unavoidable problem of sampling false negative samples. In this paper, we propose a novel method to utilize \textbf{C}ounterfactual mechanism to generate artificial hard negative samples for \textbf{G}raph \textbf{C}ontrastive learning, namely \textbf{CGC}, which has a different perspective compared to those sampling-based strategies. We utilize counterfactual mechanism to produce hard negative samples, which ensures that the generated samples are similar to, but have labels that different from the positive sample. The proposed method achieves satisfying results on several datasets compared to some traditional unsupervised graph learning methods and some SOTA graph contrastive learning methods. We also conduct some supplementary experiments to give an extensive illustration of the proposed method, including the performances of CGC with different hard negative samples and evaluations for hard negative samples generated with different similarity measurements.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

北京阿比特科技有限公司