亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov chain Monte Carlo community for being a remarkably strong result, but it is also known for being one that is notably difficult to establish. Indeed, one has to prove that the probability to reach a state $\mathbf{y}$ from a state $\mathbf{x}$, using a sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs $(\mathbf{x}, \mathbf{y})$ such that $\mathbf{x} \neq \mathbf{y}$. We provide in this paper a weaker version that does not require an inequality between the probabilities for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound, as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set. The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces with their Metropolis--Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others (and the reasons why are made clear). A thorough study in a specific context of graphical-model simulation is also conducted.

相關內容

Given a Hilbert space $\mathcal H$ and a finite measure space $\Omega$, the approximation of a vector-valued function $f: \Omega \to \mathcal H$ by a $k$-dimensional subspace $\mathcal U \subset \mathcal H$ plays an important role in dimension reduction techniques, such as reduced basis methods for solving parameter-dependent partial differential equations. For functions in the Lebesgue--Bochner space $L^2(\Omega;\mathcal H)$, the best possible subspace approximation error $d_k^{(2)}$ is characterized by the singular values of $f$. However, for practical reasons, $\mathcal U$ is often restricted to be spanned by point samples of $f$. We show that this restriction only has a mild impact on the attainable error; there always exist $k$ samples such that the resulting error is not larger than $\sqrt{k+1} \cdot d_k^{(2)}$. Our work extends existing results by Binev at al. (SIAM J. Math. Anal., 43(3):1457--1472, 2011) on approximation in supremum norm and by Deshpande et al. (Theory Comput., 2:225--247, 2006) on column subset selection for matrices.

In this work, we derive sharp non-asymptotic deviation bounds for weighted sums of Dirichlet random variables. These bounds are based on a novel integral representation of the density of a weighted Dirichlet sum. This representation allows us to obtain a Gaussian-like approximation for the sum distribution using geometry and complex analysis methods. Our results generalize similar bounds for the Beta distribution obtained in the seminal paper Alfers and Dinges [1984]. Additionally, our results can be considered a sharp non-asymptotic version of the inverse of Sanov's theorem studied by Ganesh and O'Connell [1999] in the Bayesian setting. Based on these results, we derive new deviation bounds for the Dirichlet process posterior means with application to Bayesian bootstrap. Finally, we apply our estimates to the analysis of the Multinomial Thompson Sampling (TS) algorithm in multi-armed bandits and significantly sharpen the existing regret bounds by making them independent of the size of the arms distribution support.

We develop a distribution regression model under endogenous sample selection. This model is a semi-parametric generalization of the Heckman selection model. It accommodates much richer effects of the covariates on outcome distribution and patterns of heterogeneity in the selection process, and allows for drastic departures from the Gaussian error structure, while maintaining the same level tractability as the classical model. The model applies to continuous, discrete and mixed outcomes. We provide identification, estimation, and inference methods, and apply them to obtain wage decomposition for the UK. Here we decompose the difference between the male and female wage distributions into composition, wage structure, selection structure, and selection sorting effects. After controlling for endogenous employment selection, we still find substantial gender wage gap -- ranging from 21\% to 40\% throughout the (latent) offered wage distribution that is not explained by composition. We also uncover positive sorting for single men and negative sorting for married women that accounts for a substantive fraction of the gender wage gap at the top of the distribution.

Explicit time integration schemes coupled with Galerkin discretizations of time-dependent partial differential equations require solving a linear system with the mass matrix at each time step. For applications in structural dynamics, the solution of the linear system is frequently approximated through so-called mass lumping, which consists in replacing the mass matrix by some diagonal approximation. Mass lumping has been widely used in engineering practice for decades already and has a sound mathematical theory supporting it for finite element methods using the classical Lagrange basis. However, the theory for more general basis functions is still missing. Our paper partly addresses this shortcoming. Some special and practically relevant properties of lumped mass matrices are proved and we discuss how these properties naturally extend to banded and Kronecker product matrices whose structure allows to solve linear systems very efficiently. Our theoretical results are applied to isogeometric discretizations but are not restricted to them.

We consider the classic 1-center problem: Given a set $P$ of $n$ points in a metric space find the point in $P$ that minimizes the maximum distance to the other points of $P$. We study the complexity of this problem in $d$-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length $d$. Our results for the 1-center problem may be classified based on $d$ as follows. $\bullet$ Small $d$: Assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large $d$: When $d=\Omega(n)$, we extend our conditional lower bound to rule out subquartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\varepsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension $d$, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of $n$ strings each of length $n$, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.

We analyze the bit complexity of efficient algorithms for fundamental optimization problems, such as linear regression, $p$-norm regression, and linear programming (LP). State-of-the-art algorithms are iterative, and in terms of the number of arithmetic operations, they match the current time complexity of multiplying two $n$-by-$n$ matrices (up to polylogarithmic factors). However, previous work has typically assumed infinite precision arithmetic, and due to complicated inverse maintenance techniques, the actual running times of these algorithms are unknown. To settle the running time and bit complexity of these algorithms, we demonstrate that a core common subroutine, known as \emph{inverse maintenance}, is backward-stable. Additionally, we show that iterative approaches for solving constrained weighted regression problems can be accomplished with bounded-error pre-conditioners. Specifically, we prove that linear programs can be solved approximately in matrix multiplication time multiplied by polylog factors that depend on the condition number $\kappa$ of the matrix and the inner and outer radius of the LP problem. $p$-norm regression can be solved approximately in matrix multiplication time multiplied by polylog factors in $\kappa$. Lastly, linear regression can be solved approximately in input-sparsity time multiplied by polylog factors in $\kappa$. Furthermore, we present results for achieving lower than matrix multiplication time for $p$-norm regression by utilizing faster solvers for sparse linear systems.

Sensitivity analysis for the unconfoundedness assumption is a crucial component of observational studies. The marginal sensitivity model has become increasingly popular for this purpose due to its interpretability and mathematical properties. As the basis of $L^\infty$-sensitivity analysis, it assumes the logit difference between the observed and full data propensity scores is uniformly bounded. In this article, we introduce a new $L^2$-sensitivity analysis framework which is flexible, sharp and efficient. We allow the strength of unmeasured confounding to vary across units and only require it to be bounded marginally for partial identification. We derive analytical solutions to the optimization problems under our $L^2$-models, which can be used to obtain sharp bounds for the average treatment effect (ATE). We derive efficient influence functions and use them to develop efficient one-step estimators in both analyses. We show that multiplier bootstrap can be applied to construct simultaneous confidence bands for our ATE bounds. In a real-data study, we demonstrate that $L^2$-analysis relaxes the interpretation of $L^\infty$-analysis and provides a much more reliable calibration process using observed covariates. Finally, we provide an extension of our theoretical results to the conditional average treatment effect (CATE).

Strong spatial mixing (SSM) is an important quantitative notion of correlation decay for Gibbs distributions arising in statistical physics, probability theory, and theoretical computer science. A longstanding conjecture is that the uniform distribution on proper $q$-colorings on a $\Delta$-regular tree exhibits SSM whenever $q \ge \Delta+1$. Moreover, it is widely believed that as long as SSM holds on bounded-degree trees with $q$ colors, one would obtain an efficient sampler for $q$-colorings on all bounded-degree graphs via simple Markov chain algorithms. It is surprising that such a basic question is still open, even on trees, but then again it also highlights how much we still have to learn about random colorings. In this paper, we show the following: (1) For any $\Delta \ge 3$, SSM holds for random $q$-colorings on trees of maximum degree $\Delta$ whenever $q \ge \Delta + 3$. Thus we almost fully resolve the aforementioned conjecture. Our result substantially improves upon the previously best bound which requires $q \ge 1.59\Delta+\gamma^*$ for an absolute constant $\gamma^* > 0$. (2) For any $\Delta\ge 3$ and girth $g = \Omega_\Delta(1)$, we establish optimal mixing of the Glauber dynamics for $q$-colorings on graphs of maximum degree $\Delta$ and girth $g$ whenever $q \ge \Delta+3$. Our approach is based on a new general reduction from spectral independence on large-girth graphs to SSM on trees that is of independent interest. Using the same techniques, we also prove near-optimal bounds on weak spatial mixing (WSM), a closely-related notion to SSM, for the antiferromagnetic Potts model on trees.

In this paper we investigate the stability properties of the so-called gBBKS and GeCo methods, which belong to the class of nonstandard schemes and preserve the positivity as well as all linear invariants of the underlying system of ordinary differential equations for any step size. A stability investigation for these methods, which are outside the class of general linear methods, is challenging since the iterates are always generated by a nonlinear map even for linear problems. Recently, a stability theorem was derived presenting criteria for understanding such schemes. For the analysis, the schemes are applied to general linear equations and proven to be generated by $\mathcal C^1$-maps with locally Lipschitz continuous first derivatives. As a result, the above mentioned stability theorem can be applied to investigate the Lyapunov stability of non-hyperbolic fixed points of the numerical method by analyzing the spectrum of the corresponding Jacobian of the generating map. In addition, if a fixed point is proven to be stable, the theorem guarantees the local convergence of the iterates towards it. In the case of first and second order gBBKS schemes the stability domain coincides with that of the underlying Runge--Kutta method. Furthermore, while the first order GeCo scheme converts steady states to stable fixed points for all step sizes and all linear test problems of finite size, the second order GeCo scheme has a bounded stability region for the considered test problems. Finally, all theoretical predictions from the stability analysis are validated numerically.

We study random-turn resource-allocation games. In the Trail of Lost Pennies, a counter moves on $\mathbb{Z}$. At each turn, Maxine stakes $a \in [0,\infty)$ and Mina $b \in [0,\infty)$. The counter $X$ then moves adjacently, to the right with probability $\tfrac{a}{a+b}$. If $X_i \to -\infty$ in this infinte-turn game, Mina receives one unit, and Maxine zero; if $X_i \to \infty$, then these receipts are zero and $x$. Thus the net receipt to a given player is $-A+B$, where $A$ is the sum of her stakes, and $B$ is her terminal receipt. The game was inspired by unbiased tug-of-war in~[PSSW] from 2009 but in fact closely resembles the original version of tug-of-war, introduced [HarrisVickers87] in the economics literature in 1987. We show that the game has surprising features. For a natural class of strategies, Nash equilibria exist precisely when $x$ lies in $[\lambda,\lambda^{-1}]$, for a certain $\lambda \in (0,1)$. We indicate that $\lambda$ is remarkably close to one, proving that $\lambda \leq 0.999904$ and presenting clear numerical evidence that $\lambda \geq 1 - 10^{-4}$. For each $x \in [\lambda,\lambda^{-1}]$, we find countably many Nash equilibria. Each is roughly characterized by an integral {\em battlefield} index: when the counter is nearby, both players stake intensely, with rapid but asymmetric decay in stakes as it moves away. Our results advance premises [HarrisVickers87,Konrad12] for fund management and the incentive-outcome relation that plausibly hold for many player-funded stake-governed games. Alongside a companion treatment [HP22] of games with allocated budgets, we thus offer a detailed mathematical treatment of an illustrative class of tug-of-war games. We also review the separate developments of tug-of-war in economics and mathematics in the hope that mathematicians direct further attention to tug-of-war in its original resource-allocation guise.

北京阿比特科技有限公司